

Biofungicides for Organic Management of Powdery Mildew in Winter Squash Elizabeth J. Indermaur, Charles T. C. Day, Christine D. Smart

Cornell University, Plant Pathology and Plant-Microbe Biology Section, Cornell AgriTech, Geneva, NY 14456, U.S.A.

Introduction

Powdery mildew (caused primarily by *Podosphaera xanthii*) is a ubiquitous disease of cucurbits and one of the largest limiting factors to their production¹. Organic growers have limited options for effective chemical control². Biofungicides are possible alternatives or additions to spray programs which warrant further testing to confirm efficacy^{3,4}. Field trials were conducted in New York State in 2021 and 2022 to evaluate available and developmental products. Active ingredients included biological agents, plant extracts and oils, and copper (as a non-biopesticide grower standard).

Courtesy of Meg McGrath, Cornell University Figure 1. (left) Foliar symptoms on *C. pepo*. (right) Pathogen sexual fruiting structure.

Methods

Table 1. Field trial design. Randomized complete block design with 4 replicate blocks.

		2021	2022
Cultivar	C. pepo 'Bush Delicata' (Susceptible)	\checkmark	\checkmark
Design	5 plant plots, raised beds, drip fertigation, RCBD, 4 reps	\checkmark	\checkmark
Inoculum	Natural infection, P. xanthii confirmed with ITS sequencing	\checkmark	\checkmark
Applications	1x week, 40 gal/a, CO ₂ backpack sprayer with 3-nozzle boom	7	4
Ratings	1x week, % disease severity on adaxial leaf surface	6	5

Table 2. Products evaluated. Alternating products were applied every other week. An untreated control was included. * = indicates products that were field-mixed with Dyne-Amic.

Product	Company	Active Ingredient	2021	2022
1. Howler*	AgBiome	Pseudomonas chlororaphis strain AFS009	+	+
2. Theia*	AgBiome	Bacillus subtilis strain AFS032321	+	+
3. Howler / Theia*	AgBiome	<i>Pseudomonas chlororaphis</i> strain AFS009 + <i>Bacillus subtilis</i> strain AFS032321	+	+
4. Kocide 3000-O	Certis	Copper hydroxide	+	+
5. Dyne-Amic	Helena Agri	Alkylphenol ethoxylate	+	+
6. Tril-21	Kemin	Thyme oil	+	+
7. Regalia	Marrone Bio	Reynoutria sachalinensis extract	-	+
8. Stargus	Marrone Bio	Bacillus amyloliquefaciens strain F727	-	+
9. MBI-121 (Regalia + Stargus)	Marrone Bio	<i>Reynoutria sachalinensis</i> extract + <i>Bacillus amyloliquefaciens</i> strain F727	+	+
10. AVIV*	SummitAgro	Bacillus subtilis strain IAB/BS03	+	+
11. Timorex Act	SummitAgro	Tea tree oil	+	+
12. AVIV / Timorex Act*	SummitAgro	Bacillus subtilis strain IAB/BS03 + Tea tree oil	+	+
13. Curezin	VM Agritech	Copper zinc	-	+

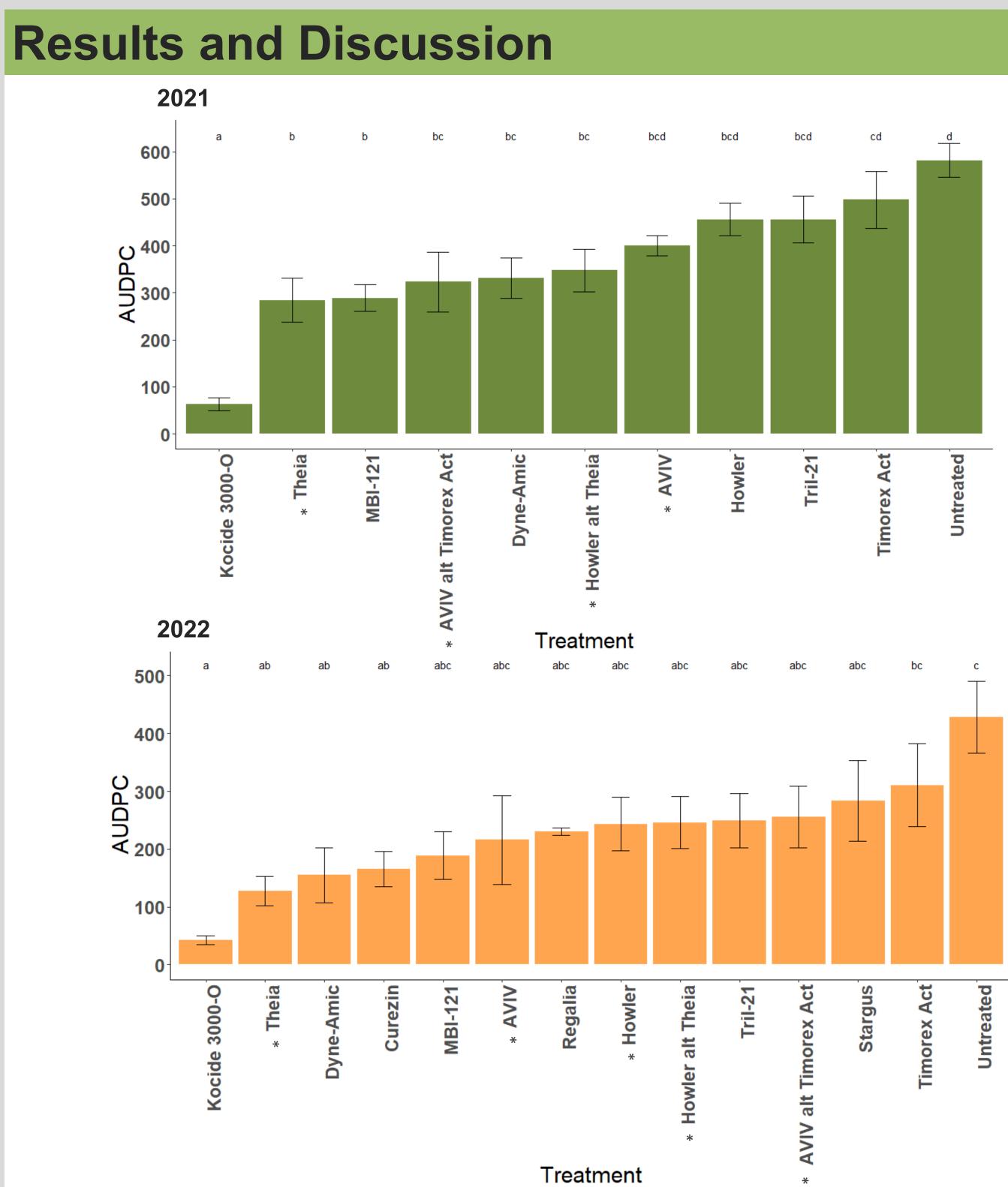


Figure 2. Powdery mildew disease severity (above 2021, below 2022). Area under the disease progress curve (AUDPC) calculated from weekly ratings.

• Kocide 3000-O reduced disease severity the most – statistically significant reduction in 2021. • Theia was numerically the next best treatment and significantly reduced disease severity compared to the untreated control, in both years.

• Fruit yield was not different across treatments in either year.

Figure 3. Representative plots. Some phytotoxicity observed in Kocide 3000-O treatment. Theia treatment shows markedly reduced diseased severity compared to the untreated control.

Future Directions

Evaluate moderately efficacious products on hosts with partial resistance.

Other Disease Problems

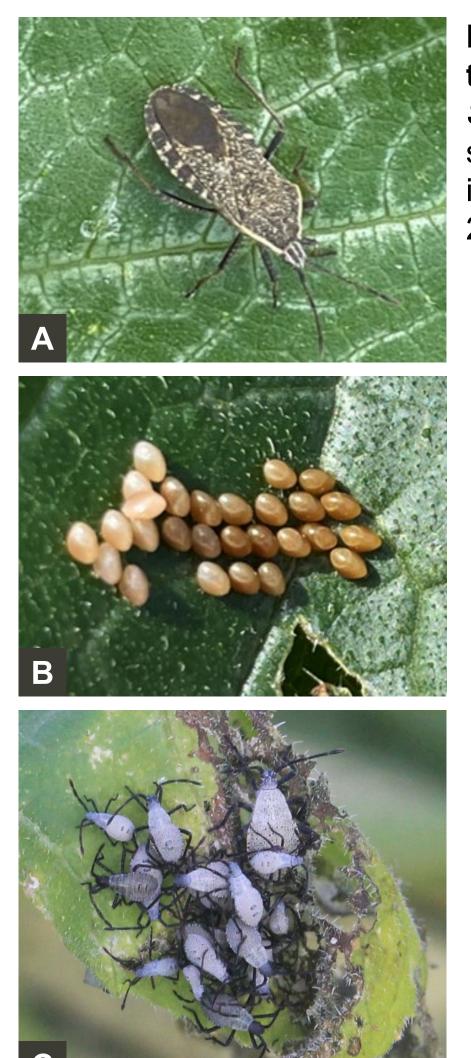


Figure 4. Cucurbit yellow vine decline (CYVD) caused by the squash bug (Anasa tristis)-vectored bacterium Serratia marcescens. A) Adult. B) Eggs on adaxial leaf surface. C) Nymphs and feeding damage. D) Squash plant infected with CYVD. E) Collapsed plant. By mid-September 2022, 12% of plants had died or were declining from CYVD.

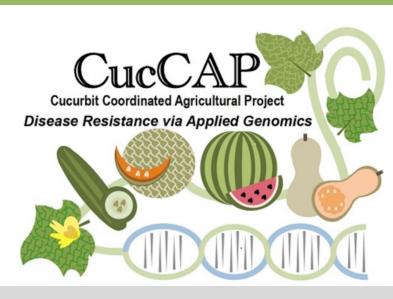
References

- 1. Pérez-García, A., Romero, D., Fernández-Ortuño, D., López-Ruiz, F., De Vicente, A., and Torés, J. A. 2009. The powdery mildew
- mildew-organically-key-points-for-success [Accessed October 26, 2022].
- on summer squash and cantaloupe in Florida. Plant Disease. 95:461–468
- management of cucumber powdery mildew with essential oils. Agriculture.11:1177

Acknowledgements

This work was supported by: -NIFA, USDA, under award # 2020-51181-32139 -Members of the C. Smart Lab

Contact


Elizabeth Indermaur (she/her) Cornell AgriTech

fungus Podosphaera fusca (synonym *Podosphaera xanthii*), a constant threat to cucurbits. Molecular Plant Pathology. 10:153–160 McGrath, M.T. 2022. Managing cucurbit powdery mildew organically - Key Points for Success. Cornell Vegetables. Available at: https://www.vegetables.cornell.edu/pest-management/disease-factsheets/cucurbit-powdery-mildew/managing-cucurbit-powdery-

3. Zhang, S., Vallad, G. E., White, T. L., and Huang, C.-H. 2011. Evaluation of microbial products for management of powdery mildew

4. Mostafa, Y. S., Hashem, M., Alshehri, A. M., Alamri, S., Eid, E. M., Ziedan, E.-S. H. E., and Alrumman, S. A. 2021. Effective

Ph: +1 (919) 239-5044 Email: eji7@cornell.edu https://twitter.com/libby_indermaur