Machine Learning Enabled Early Diagnosis of HLB in Citrus

Dr. Yu Wang, Associate Professor

E-mail: yu.wang@ufl.edu

University of Florida, Institute of Food & Agricultural Sciences,
Citrus Research & Education Center

September. 25th, 2025

SCIENTIFIC MOTIVATION

Early Detection for Citrus HuangLongBing(HLB)

Destructive disease of citrus

- Bacterium: Candidatus Liberibacter asiaticus (CLas)
- Psyllid vector: Diaphorina citri (D. citri)

- Citrus production decreased from 250 million boxes in 2005 to 15 million boxes in 2024.
- qPCR for bacterial detection at 6 months
 UF IFAS

Early Detection for Citrus HuangLongBing(HLB)

CALIFONIA

- Destroy infected trees
- Establish quarantines
- Prevent further spread

FLORIDA

- Evaluate novel treatments
- Identify tolerant/resistant cultivars
- Understand tree response

Nontargeted metabolomics workflow

Plant materials

'Midsweet' sweet orange trees planted in greenhouse

Budwoods source:

- 1) 'Midsweet' budwood was grafted onto US-802 rootstock & grown for one year
- Seedlings were inoculated with scions from completely pathogen-free & seriously CaLas-infected sour oranges;
- 3) After Passing qPCR test, budwood was cut for grafting

Sampling: 7 weeks post-exposure, 10 to 14 leaves were randomly collected from each of 12 individual healthy & infected trees.

healthy tree

HLB-affected tree

DATA CHALLENGE

Acquisition

Analysis

♦H-12

-0.5

♦H-3

healthy

-0.5

No HLB-free trees in the grove in Florida anymore

Greenhouse: 24 Samples (12 HLB-affected, 12 healthy)

UHPLC/MS-based nontargeted metabolomics analysis

Data pre-processing & database search

Annotated features Selected

Model Fitting and Validation

♦I-10

0.5

HLB-affected

PCA visualizes differences between citrus trees of healthy group & HLB-affected group

PC1 (17.2%)

♦H-8

Machine learning (ML)

- Manage ultra-high-dimensional data filter noise, select key features.
- Detect complex, non-linear patterns between biomarkers and disease.
- Boost prediction accuracy for early, reliable HLB detection.

Model Selection

Select appropriate ML algorithms

Random Forest

0.5

Logistic Regression (L1/L2)

y=0.3

Threshold Value

Support Vector Machine

Gradient-Boosted Decision Tree

Multi-Layer Perceptron

Modeling & Performance Evaluation

Comparison of different state-of-the-art ML classifiers

Modeling & Performance evaluation

Mean performance metrics of six ML classifiers based on 1925 metabolite features in four datasets

Data source	Classifier	Confusion matrix			X	Accuracy (%)	Sensitivity (%)	Specificity (%)	Precision (%)	F ₁ Score (%)
		TN ^a	FP	FN	TP					
CN ^b	LR-L1	8	4	0	12	83.33 ± 23.57	100.00 ± 0.00	66.67 ± 47.14	83.33±23.57	88.89±15.71
(707)	LR-L2	11	1	0	12	95.83 ± 13.82	100.00 ± 0.00	91.67 ± 27.64	95.83±13.82	97.22±9.21
	RF	8	4	0	12	83.33 ± 23.57	100.00 ± 0.00	66.67 ± 47.14	83.33±23.57	88.89±15.71
	GBDT	11	1	0	12	95.83 ± 13.82	100.00 ± 0.00	91.67 ± 27.64	95.83±13.82	97.22±9.21
	SVM	5	7	0	12	70.83 ± 24.65	100.00 ± 0.00	41.67 ± 49.30	70.83±24.65	80.56±16.43
	MLP	10	2	1	11	87.50 ± 21.65	91.67 ± 27.64	83.33 ± 37.27	n/a ^c	n/a
CP (816)	LR-L1	8	4	0	12	83.33 ± 23.57	100.00 ± 0.00	66.67 ± 47.14	83.33±23.57	88.89±15.71
	LR-L2	11	1	0	12	95.83 ± 13.82	100.00 ± 0.00	91.67 ± 27.64	95.83±13.82	97.22±9.21
	RF	9	3	0	12	87.50 ± 21.65	100.00 ± 0.00	75.00 ± 43.30	87.50±21.65	91.67±14.43
	GBDT	11	1	0	12	95.83 ± 13.82	100.00 ± 0.00	91.67 ± 27.64	95.83±13.82	97.22±9.21
	SVM	6	6	0	12	75.00 ± 25.00	100.00 ± 0.00	50.00 ± 50.00	75.00±25.00	83.33±16.6
	MLP	7	5	0	12	79.17 ± 24.65	100.00 ± 0.00	58.33 ± 49.30	79.17±24.65	86.11±16.43

HN (249) ...

HP (453) ...

Reduce Features by

another 50%

Feature Selection and Validation: Top-ranked metabolic biomarkers

☆ Translation

Discovered 14 significant metabolic pathways related to HLB & number of up-/down-regulated metabolites

Model validation: Top-ranked metabolic biomarkers

Content variation of some representative metabolites in three significant pathways

Final predictive model

Mean performance metrics of two optimal ML models based on identified metabolic biomarkers

Data source	Classifier	Accuracy (%)	Sensitivity (%)	Specificity (%)	Precision (%)	F ₁ score (%)
CN ^b (108)	LR-L2	87.50 ± 21.65	100.00 ± 0.00	75.00 ± 43.30	87.50±21.65	91.67±14.43
	GBDT	95.83 ± 13.82	100.00 ± 0.00	91.67 ± 27.64	95.83±13.82	97.22±9.21
CP (161)	LR-L2	87.50 ± 21.65	100.00 ± 0.00	75.00 ± 43.30	87.50±21.65	91.67±14.43
	GBDT	91.67 ± 18.63	100.00 ± 0.00	83.33 ± 37.27	91.67±18.63	94.44±12.42

External validation

```
Import test data
   td = pd.read_csv('data_test.csv')
>>> td
  Unnamed: 0
                  True label
                                 CN003
                                                CN635
                                                         CN666
                                                                  CN677
        I-13
                    infected -0.234348
                                        ... -0.133113 1.590513 -0.366157
        I-14
                    infected -0.741116
                                        ... -0.033357 -0.454909 0.988971
                    infected 0.168875 ... -0.898921 0.148068 -0.760720
        I-15
        H-13
                    healthy 1.919665 ... -0.290310 -1.037492 -0.954222
                                        ... 1.936792 0.630139 1.495343
                     healthy -0.733634
        H-14
                                        ... -0.581091 -0.876319 -0.403214
                     healthy -0.379442
        H-15
[6 rows x 110 columns]
>>> tdv = td.iloc[0:,2:]
>>> # Predict label
```

Refer to: https://github.com/Yu-Wang-Lab/Multiple ML modeling for HLB prediction

Result of external validation for two optimal ML methods

Sample	True label ı	LR-	·L2	GBDT		
	True label	Predicted label	HLB prob. (%)	Predicted label	HLB prob. (%)	
I-13	infected	infected	96.47%	infected	99.88%	
I-14	infected	infected	98.48%	infected	99.88%	
I-15	infected	infected	99.75%	infected	99.88%	
H-13	healthy	healthy	0.85%	healthy	0.12%	
H-14	healthy	healthy	1.17%	healthy	1.98%	
H-15	healthy	healthy	0.81%	healthy	1.12%	

Take-Home Message

- A new approach combining UHPLC/MS-based metabolomics with machine learning for the early detection of HLB was developed.
- Six ML models were tested; Logistic Regression
 (L2) and Gradient-Boosted Decision Trees achieved the best performance (95.8% accuracy).
- This strategy overcomes limitations of conventional methods (low sensitivity) and avoids issues with image-based ML.
- Key biomarkers were confirmed through pathway and differential analysis, showing strong consistency with previous studies.

Nontargeted metabolomics-based multiple machine learning modeling boosts early accurate detection for citrus Huanglongbing 3

Zhixin Wang, Yue Niu, Tripti Vashisth, Jingwen Li, Robert Madden, Taylor Shea Livingston, Yu Wang ▼

Horticulture Research, Volume 9, 2022, uhac145, https://doi.org/10.1093/hr/uhac145

Published: 27 June 2022 Article history ▼

ACKNOWLEDGEMENT

