Blue Carbon Losses
With Salt Marsh Drainage

Gail Chmura¹, Lee vanArdenne¹, Jan Wollenberg¹, Thomas Mozdzer², Asim Biswas³

¹McGill University, ²Bryn Mawr College, ³University of Guelph

gail.Chmura@mcgill.ca
https://chmuralab.weebly.com/
2006 revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories

then the 2013 Supplement on Wetlands

Chapters
1 Introduction
Chapter 2 Drained Inland Organic Soils
Chapter 3 Rewetted Organic Soils
Chapter 4 Coastal Wetlands
Chapter 5 Inland Wetland Mineral Soils
Chapter 6 Constructed Wetlands for Wastewater Treatment
Chapter 7 Cross-cutting Issues and Reporting

Emission factors produced for land use change

www.IPCC.ch – see publications/methodologies
C loss assumed to extend to 1 m. Emissions persist for as long as it takes soil OC (organic matter) to be oxidized (that is until loss is equivalent to stocks reported in earlier tables).

Table 4.13 Annual Emission Factors (EF\textsubscript{DR}) Associated Drainage (EF\textsubscript{DR}) on Aggregated Organic and Mineral Soils (Tonnes C ha-1 yr-1)

<table>
<thead>
<tr>
<th>Ecosystem</th>
<th>EF\textsubscript{DR}</th>
<th>95% CI</th>
<th>Range</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidal marshes and mangroves</td>
<td>7.91</td>
<td>5.2, 11.8</td>
<td>1.2 – 43.9</td>
<td>22</td>
</tr>
</tbody>
</table>

1 Camporese et al. (2008), Deverel & Leighton (2010), Hatala et al. (2012), Howe et al. (2009), Rojstaczer & Deverel (1993)

Data from 3 sites:
- Camporese et al. - a drained cropped peatland south of Venice, Italy (was a Phragmites site)
- Deverel & Leighton, Hatala et al., Rojstaczer & Deverel - Sacramento-San Joaquin Delta, California, USA, freshwater tidal
- Howe et al. - Hunter Estuary, Australia (mangroves and salt marsh)
Climate of these sites

Sacramento Delta, California
8-24 °C

Venice Lagoon, Italy
0-7°C

Hunter Estuary, NSW Australia
10°C
Compare IPCC sources to climate of other sites where drainage has been prevalent & in some cases continues to occur.
Marsh “reclamation” or dyking & drainage has been extensive on Canada’s east coast, particularly the mesotidal St. Lawrence (2-3 m) & macrotidal Bay of Fundy (6-11 m).

dyking on St. Lawrence Estuary
1859
Fundy
mid 17th century
Methods –
Decomposition bag study in marsh and farm
Aboveground on soil surface
Belowground material at 15 cm soil depth

van Ardenne et al. in preparation
Results –
Decomposition bag study in marsh and farm
Shows considerable carbon can be lost in the first year
Discount role of temperature:
a 3-6% increase in decay rate per °C (Kirwan et al. 2014)
Farm soil was ~1 °C higher = 6% increase in decay

We assume wherever drainage has occurred, a minimum of 37.6% blue carbon lost in the 1st yr.
Cored to basal marine clay in farm and marsh, controlling for compaction, measuring bulk density and OC by LOI.

van Ardenne et al. in preparation
Flooded marsh
(3 cores)

Carbon density (g cm\(^{-3}\))

Bulk density (g cm\(^{-3}\))

Drained marsh
(14 cores)

Carbon density (g cm\(^{-3}\))

Higher C density in surface due to agricultural management

Mean ±sd
Results –

Despite the surface C enrichment due to agriculture...
The deposit above the marine clay in the undrained marshes is thicker & stores 265 - 642 tonne C ha\(^{-1}\)
farm soil deposit stores 47 - 461 tonne C ha\(^{-1}\)

Average Rate of loss
4.91 tonnes C ha\(^{-1}\) yr\(^{-1}\)

IPCC average
7.9 tonnes C ha\(^{-1}\) yr\(^{-1}\)

van Ardenne et al. in preparation
As much as 39% of the original C stock has been lost.

Farms may still be losing C and we can regain carbon by restoring them – but we have to convince the agriculture community.

van Ardenne et al. in preparation
Acknowledgements

Kamouraska farmers for access, particularly Dr. Parent
Many McGill undergrad students
Commission for Environmental Cooperation
Natural Sciences and Engineering Research Council of Canada

Thanks!

Abandoned dyke
Bay of Fundy

St. Lawrence River estuary
Recent History of Lusby Marsh

1935

1959

1979

Filling the gaps: Return of ecosystem services
Filling the gaps: Return of ecosystem services