THE ROLE OF CYANOBACTERIA IN NUCLEATING THE PRECIPITATION OF CALCIUM CARBONATE IN THE EVERGLADES: VATERITE AND ARAGONITE

Barry H. Rosen, Ph. D.
Office of the Southeast Regional Director
(CFLWSC) Orlando, FL
brosen@usgs.gov
COLLEAGUES

Decom Physical Model Science Team:
Colin Saunders
Sue Newman
Fred Sklar
Joel Trexler
Jud Harvey

USGS Greater Everglades Program:
Nick Aumen

Florida International University
Nick Schulte
Evelyn Gaiser

The City College of New York
Stephanie Pena
Early Work: Calcareous Periphyton

- periphyton give rise to calcitic marl
- different crystals on different species
- water column chemistry is important

CALCAREOUS PERiphyTON AND WATER CHEMISTRY IN THE EVERGLADES

by

Patrick J. Gleason

Central and Southern Florida Flood Control District
P. O. Box V
West Palm Beach, Florida 33402
and

William Spackman, Jr.
Department of Geosciences
The Pennsylvania State University
University Park, Pennsylvania 16802

ABSTRACT

Calcareous blue-green algal periphyton covers large areas of wetlands within South Florida. The periphyton appears to give rise to a fresh water calcitic marl within the lower Everglades as indicated by numerous crystal-algal filament relationships: 1) different crystals on different algal species. 2) exoskeletal crystal formations and evidence of crystal growth on Scytosiphon hofmannii. 3) lithified encrustations and the lack of uniformity of calcification on all algal species. 4) calcium concentration variations in water overlying periphyton. 5) higher basic pHs within the periphyton relative to those in water surrounding the periphyton.

Preliminary research suggests that the calcareous periphyton is responsive to changes in water chemistry. Within Conservation Area 1 the high biomass blue-green algal flora occurs principally in the basic, alkaline water of peripheral areas. The algal flora changes to non-calcareous predominantly green algal periphyton of lower biomass within the acid, poorly-buffered water in the interior of Conservation Area 1.

...and Pat’s Ph. D thesis

...and Joan Browder, Dave Swift
Calcareous Wet Prairies and Marl Prairies

“Marls are fine white calcareous muds formed from calcite precipitated by a mixture of green algae, blue-green algae, and diatoms, known as periphyton. These soils are highly alkaline and impermeable, sealing off the underlying limestone and causing water to pond during the wet season. In the rocky glades region of the southeastern Everglades marl prairies occur on exposed limestone bedrock where limestone pinnacles are exposed through the marl soils forming a micro-karst topography” (USFWS 1999).
Cyanobacteria (aka blue-green algae)

- gram-negative bacteria
- pigments in thylakoids
- exopolymeric substances
Ecological Strategies: desiccation tolerant (exopolymeric substances)
The cyanobacteria milieu promotes calcium carbonate nucleation: *Schizothrix*

Factors:
- sheath/bacteria,
- available Ca,
- high pH,
- CO$_2$-concentrating mechanism

“a biochemical system that allows the cells to raise the concentration of CO$_2$ for Rubisco, up to 1000-fold over that in the surrounding medium”

Kamennaya and others, 2012
Calcium carbonate nucleation: *Schizothrix*
Calcium carbonate nucleation: *Schizothrix* (UV)
Calcium carbonate crystals on *Schizothrix* (SEM)
Calcium carbonate crystals on *Schizothrix* (SEM)
Schizothrix vs. Scytonema crystals

Schizothrix

10.0 μm

Scytonema

20.0 μm
The cyanobacteria milieu promotes calcium carbonate nucleation: *Scytonema*
Scytonema

Visible crusts

UV
Calcium carbonate crystals on *Schizothrix* (SEM) and Energy Dispersive X-ray Spectroscopy (EDS)
“chemical microanalysis technique used in conjunction with scanning electron microscopy (SEM)”.

Energy Dispersive X-ray Spectroscopy

<table>
<thead>
<tr>
<th></th>
<th>Scytonema</th>
<th></th>
<th>Shizothrix</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wt%</td>
<td>At%</td>
<td>Wt%</td>
<td>At%</td>
</tr>
<tr>
<td>Ca</td>
<td>31.1</td>
<td>14.1</td>
<td>63.5</td>
<td>39.5</td>
</tr>
<tr>
<td>C</td>
<td>19.4</td>
<td>29.4</td>
<td>9.12</td>
<td>18.9</td>
</tr>
<tr>
<td>O</td>
<td>49.5</td>
<td>56.4</td>
<td>26.1</td>
<td>40.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>aragonite</td>
<td>vaterite</td>
</tr>
<tr>
<td></td>
<td>CaC$_2$O$_4$</td>
<td>CaC$_2$O$_5$</td>
<td>Ca$_2$CO$_2$</td>
<td></td>
</tr>
<tr>
<td>CaC$_2$O$_2$</td>
<td></td>
<td></td>
<td>Note, no phosphorus</td>
<td></td>
</tr>
</tbody>
</table>
Turning “off” the nucleation in the presence of phosphorus (Chakia)

\[\text{PO}_4(50-100 \mu\text{g/L}) \]

Cyanobacteria as Biocatalysts for Carbonate Mineralization

Review
*Minerals 2012, 2, 338-364; doi:10.3390/min2040338

Nina A. Kamennaya, Caroline M. Ajo-Franklin, Trent Northen and Christer Jansson *
Turning “off” the nucleation in the presence of phosphorus (Chakia)

PO_4 (50–100 µg/L)
Other Cyanobacteria
Thank You!
brosen@usgs.gov