Funding:
-Kent State University
-Cleveland Metroparks Emerald Necklace Endowment Fund

Student Support: Jillian Sarazen, Jaynell Nicholson, Carlyn Mitchell, Olivia Mullen, Riley Weatherholt, Noel Miavez and ALL the Kent State University Water Quality Quest Volunteer Scientists!
Urban Aquatic Ecosystems are different

Urban Stream Syndrome

Urban Stream Ecology

Urban Watershed Continuum Concept

Walsh et al. 2005

What about wetlands?

Kaushal & Belt 2012
Urban Wetlands & Water Quality

- Ubiquitous
- Relied on & invested in for water quality
- Understudied
Northeast Ohio Urban Wetlands: Assessing hydrologic and water quality function

http://www.gcbl.org/explore/water/rivers/cuyahoga-river
Cleveland Metroparks’ Watershed Stewardship Center
“Working Wetland”
Cleveland Metroparks’ Watershed Stewardship Center
“Working Wetland”

Monitored Hydrology and Water Quality
June 2015 - October 2016

Inflows & Outflows
“Working Wetland” Water Quality
Wetland Chloride Concentrations

Outflow: 3-1260 mg/L
Inflow: 2-492 mg/L
Interior: 18-2053 mg/L

Evaporative Concentration

Summer 2016: Extreme Drying & Reflooding
EPA Freshwater toxicity criteria:
chronic = 230 mg/L
acute = 860 mg/L
Chloride (Cl-): Rural to Urban Comparison

of Wetland Sites:

NE Ohio
Urban

27
N=382

3-2050
Biogeochemical effects of salt?

Organismal toxicity

\[\text{Road Salt (NaCl, CaCl}_2, \text{ and others)} \]

\[\text{N release due to cationic exchange} \]

\[\text{Effects on P retention (e.g., phosphate sorption) are unknown} \]

\[\text{P?} \]
Sulfate (SO_4^{2-}): Rural to Urban Comparison

- MI Restored Wetland
- MI Wetlands
- NE Ohio Non-Urban
- NE Ohio Urban

of Wetland Sites:
- 1
- 24
- 46
- 27

N=298
N=50
N=98
N=382
Cascading effects of high sulfate?

SO$_4^{2-}$ → H$_2$S, HS$^-$

Anoxic conditions → Sulfate reduction → Sulfide

Iron binding & P release

Inhibits denitrification

NO$_3^-$ → N$_2$O, N$_2$

Metal binding & detoxification

CuS NiS

Mercury methylation

MeHg$^+$

Inhibits methanogenesis

CO$_2$ → CH$_4$
Emerging Hypothesis

• In urban wetlands, the biogeochemical rules are the same, but the players are different:
 – “Freshwater Salinization Syndrome”

• Novel urban chemical stressors may lessen wetlands’ nutrient removal capacity
 – N release due to Na cationic exchange
 – P release due to S binding with Fe

Kaushal et al. 2018
Better understanding of urban wetland biogeochemistry will help:

– to quantify services & disservices under management scenarios
– Set realistic goals
Dry & Disconnected

July 15, 2016
Where are Cl & SO4 coming from?
Evidence for S in wetland: CMP high Acid Volatile Sulfides
4/19/2016: “Opened top board of water control structure to provide storage volume for next rain event”

4/20/2016: “Closed top board”

Discharge events w/ no associated rain events
Chloride (Cl⁻) vs. # of Wetland Sites:

- **NE Ohio Urban**: 27
- **N=141**

Road Salt (NaCl)

- Na⁺ Cl⁻
- NH₄⁺ Cl⁻
- Na⁺ NH₄⁺
- Cl⁻ NH₄⁺

Web Link: www.troutnut.com
Sulfate (SO$_4^{2-}$) levels in wetland sites:

- MI Restored Wetland: 1 site, N=357
- MI Wetlands: 24 sites, N=104
- NE Ohio Non-Urban: 46 sites, N=77
- NE Ohio Urban: 27 sites, N=141

Range of sulfate levels:
- 0-36 mg/L
- 0-67 mg/L
- 0-75 mg/L
- 0.8-720 mg/L
Water Level Management

Discharge events w/ no associated rain events due to board removal.
Interannual Variability: A Tale of Two Summers

Rainfall (mm)

Level (m)

Flow Rate (m3/s)

Extreme Drying & Reflooding