RAPID FORMATION OF POTENTIAL ACID SULFIDE SOILS FOLLOWING WETLAND RESTORATION

Jacob F. Berkowitz, Christine M. VanZomeren

Jacob.F.Berkowitz@usace.army.mil

Research Soil Scientist
ERDC Environmental Laboratory
Biogeochemistry of Wetlands
April 2018
Project Partners

US Army Corps of Engineers

ERDC

The Nature Conservancy

GreenTrust Alliance

New Jersey DEP

Wetlands Institute

LSU

EMRRP

BUILDING STRONG®
Need for wetland restoration:
Coastal wetlands degradation
Urban development, sea level rise, salt H2O intrusion, lack of sediment inputs
Degradation linked to marsh drowning; fragmentation; subsidence; sea level rise
Dredged materials \rightarrow potential sediment source
Thin layer placement restoration implemented
Little data on biogeochemical effects

Potential formation of FeS/acid sulfate soils?
Iron sulfate soils (FeS)

Naturally occurring in wetlands

Microbial SOM oxidation \rightarrow Anaerobic conditions

$\text{Fe}^{3+} (s) \rightarrow \text{Fe}^{2+} (aq)$

$\text{SO}_4^{2-} (aq) \rightarrow \text{S}^{2-} (aq)$

$\text{Fe}^{2+} (aq) + \text{S}^{2-} \rightarrow \text{FeS}_2 (s)$

Stable under anaerobic conditions

Generate acidity when oxidized

$\text{FeS}_2 (s) + 3.75 \text{O}_2 + 3.5 \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4 (aq) + \text{Fe(OH)}_3 (s)$

Cat clay soils or poison earth soils

Aerobic soil incubation pH $<$4; may reach $<$2
Sediment added for restoration

Black FeS

Marsh soil
Objectives:
1. Investigate potential FeS formation
2. Implications for restoration

Approach
1. Case studies - Reports of black soils forming following restoration activities
2. Laboratory - incubation to investigate FeS formation in simulated restoration context
Case studies - field data

- Document FeS formation
- H2O2
- HCl
- IRIS tubes
Case studies - lab data

16wk aerobic incubation documents soil pH $\rightarrow < 4$

FeS present in BOTH native marsh and restored areas
Incubation experiment
Can we form FeS in the lab?
3 treatments: Drained, flooded, simulated tidal treatments

Sediment added for “restoration”
Marsh soil
Soil morphology

Sediment added for “restoration”

- Black FeS
- Gray depleted matrix
- Marsh soil

4-6 wks
Soil morphology

a) Continuously inundated
 - Dredged material 2.5Y 5/3
 - Depleted matrix 10YR 5/1
 - FeS N 2.5/0
 - Marsh soil 2.5Y 4/2

b) Simulated tidal

Iron sulfide formation (% of the soil profile)
Incubation time (days)
Soil morphology

a) Continuously inundated
 Dredged material 2.5Y 5/3
 Depleted matrix 10YR 5/1
 FeS N 2.5/0
 Marsh soil 2.5Y 4/2

b) Continuously drained

c) Continuously drained
Redox potential

a) Dredged material
- Continuously inundated
- Simulated tidal
- Continuously drained

b) Marsh soil
Symbol indicates period when soil was chemically reduced with respect to S
- Continuously inundated
- Simulated tidal
- Continuously drained
Soil pH - drainage induced acid condition

c) Dredged material

d) Marsh soil
Total soil
Fe lost from marsh soil

Constant in dredged material

Fe$^{2+}$ originating in marsh soil
Total soil S lost from marsh soil

Migrating into dredge material
Dissolved Fe2+ concentrated in depleted layer

![Graph showing dissolved Fe2+ concentrations in different conditions.](image)
Dissolved S^{-2} throughout profile

c) Continuously inundated

d) Simulated tidal

S^2- in soil solution (mg L$^{-1}$)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Dredged</th>
<th>Depleted Soil layer</th>
<th>FeS</th>
<th>Marsh</th>
</tr>
</thead>
<tbody>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For c) and d), there are similar trends, with the S^2- levels decreasing from Dredged to Marsh, and the height of the bars representing the concentration levels.
Conclusions

Few restoration projects consider biogeochemistry
FeS formed rapidly
Changed soil morphology

FeS >>> Flooded >> Tidal > Drained

S^{2-} and Fe^{2+} migrating in profile
Potential for soil acidification
Implications for restoration
Questions?

Jacob.F.Berkowitz@usace.army.mil