Research Problem

- The two-stage channel design has been proposed as a strategy to decrease nutrient loads from agricultural watersheds.
- Inset floodplains increase nitrogen removal by denitrification and biological uptake (Roley et al. 2012).
- Previous work has demonstrated that there is a potential for P removal (Davis et al. 2015), but the controlling factors are not well understood.

Hypotheses and Approach

1. Does two-stage implementation enhance P retention capacity on the created inset floodplains?

Hypothesis: The two-stage channel will have a higher P retention capacity and be a stronger sink for P than its unmodified counterpart. This will be driven primarily by organic matter build-up on the floodplain benches, and will be more pronounced in older systems.

2. Does two-stage implementation change the P properties of streambed sediments?

Hypothesis: Coarsening of streambed sediments will lead to a lower P retention in two-stage compared to conventional channels. Low surface area will leave few sorption sites and less space for biofilm growth.

Field Work: Sampling blitz at ten two-stage sites around Indiana

- Two 100 meter reaches at each site – one with an inset floodplain, one conventional channel
- Sampling during baseflow
- Collected soil samples from 5 transects along each reach from the streambed and banks
- Soils were homogenized by location before lab analyses

Two-stage channel in northern Indiana

		Floodplain	Floodplain					
•	•	→ Stream —	•					
•	•	•	•					

Laboratory Analyses

- Water-extractable P
- Equilibrium P Concentration (EPC_0)
- Organic matter
- Particle size analysis
- Phosphorus Sorption Index (PSI)
- Chlorophyll a
- Oxalate-extractable Fe, Al, P

Phosphorus Retention in Restored Agricultural Floodplains Alex Johnson^a, Mark Williams^b, and Sara McMillan^a

a. Agricultural & Biological Engineering, Purdue University b. USDA National Soil Erosion Lab, West Lafayette, IN

Results

				Particle			
	Location	Moisture Content (%)	Organic Matter (%)	Sand (%)	Silt (%)	Clay (%)	Chla (mg/L)
Stream	Two-stage	28 ± 5	3.9 ± 1.0	40 ± 10	50 ± 7	10 ± 3	0.9 ± 0.3
	Conventional	28 ± 6	4.5 ± 1.6	40 ± 10	50 ± 8	10 ± 4	1.4 ± 0.7
Floodplain	Two-stage	31 ± 4	6.5 ± 0.9	34 ± 11	56 ± 8	10 ± 4	1.1 ± 0.7
	Conventional	28 ± 3	6.5 ± 0.9	34 ± 11	56 ± 8	9 ± 4	0.9 ± 0.5

- Soil properties of inset floodplains were similar to stream banks in conventional channel
- Organic matter was higher on the floodplain soils than the stream sediments
- Floodplain generally had more silt and less sand than streambed sediments

- Organic matter builds up over time on floodplain benches
- There is ~2% drop in organic matter after two-stage channel installation and regains ~0.3% organic matter more than the control reach each year
- The two-stage "catches up" 7 years after implementation and continues to increase over time
- Organic matter was driver of PSI
- Does this reach a threshold/maximum?

- Water-extractable P (WEP) was the only statistically different soil P property between the twostage and conventional channels
- High among site variability; stream & floodplain values tracked each other suggesting watershed scale drivers
- Plotted points are the difference between two-stage and control values at each site
- Dashed line is mean soil P property; p value from paired ttest

- Most reaches were sinks for phosphorus
- Points below the 1:1 line have SRP>EPC_{Ω}, indicating that soils should function as a sink of P
- The variability between sites was much greater than the variability between two-stage and conventional channels

- reaches
- downstream
- uptake and groundwater inputs

Conclusions and Future Work

- There were little differences in soil properties between the two-stage and control channels for these ten sites sampled at baseflow conditions
- However, a larger wetted area could lead to higher overall nutrient retention during storm events
- Organic matter was a key driver of soil P properties
- We may need to evaluate the success of floodplain restoration projects over longer timescales (10+ years)
- events?

Mandy Limiac Mariah Lehmkuhl Brenda Hoffman Janae Bos Seth Harden The McMillan Lab The Fish Dr. Gregory Noe

Results (Continued) How good is EPC₀?

	I I					 			 		
FSC	Adams CTL		Adams TSC		Little Pipe CTL		Little Pipe TSC				
•	•								' 		
						•		•			
		•			•	 			 		
									i i I		•
wn EPC	Up Down	EPC	Up	Down	EPC	Up	Down	EPC	Up	Down	EPC
• Upstr	eam 🔺	Downs	stream	•	EPC						

Of 20 reaches, 8 had significant SRP concentration changes EPC₀ was predictive of P concentration change at 5 of those 8

If EPC₀ is a good predictor, we would expect SRP concentrations to get closer to the EPC₀ as water moved from upstream to

Hypothesize that discrepancy is likely caused by biological

- This study was conducted at baseflow conditions. How do
- these P properties change seasonally, and during storm

