Diel Fluctuation of Carbon Dioxide Emission Affected By Eutrophication and Dissolved Organic Matter in China's Largest Urban Lake

Yang Wang

 Wuhan Institute of Technology

Prof. Siyue Li's lab Wuhan Institute of Technology

Jun. 2025

Inland waters are crucial for carbon exchanges (potential GHG emitters)

Table1 Estimates of CO₂ –C emissions(Tg C yr⁻¹) from global lakes

References	Tg $\rm CO_2$ –C yr ⁻¹	Improvements for upscaling		
Cole et al. (2007)	109.09	Early global estimate		
Duarte et al. (2008)	79.09	Including saline lakes		
Marotta et al. (2009)	439.09	Including tropical lakes		
Raymond et al. (2013)	319.09	Including reservoirs		
Holgerson and Raymond (2016)	570	Including small ponds		
DelSontro et al. (2018)	242.73-501.82	Based on remote sensing techniques		

Table 2 Estimates of CO₂–C emissions(Tg C yr⁻¹) from China's lakes

References	Tg CO₂−C yr⁻¹	Improvements for upscaling
Li et al. (2018)	15.98	Early estimates in China
Ran et al. (2021)	7.3/8.4	Estimates in 1980s/2010s
Wang et al. (2023)	6.8	Including saline lakes, reservoirs
Sun et al. (2023)	6.78	Estimates by machine learning based on real- time water parameters
Wen et al. (2024)	8.07	Including saline lakes and lakes with different trophic states
Xiao et al. (2024)	2.75/-0.41	Estimates during 1988- 1992 and 2007-2010

Accurately quantifying the carbon dioxide (CO_2) emissions from lakes remains challenging due to the large temporal and spatial variability (Hastie et al. 2018; Borges et al. 2022; Lauerwald et al. 2023)

Human activities Land use alterations

Urban land use is the typical land use type

(Song et al. 2022)

Lakes in metropolitan areas are typically characterized by relatively small surface area, shallow waters, increased impervious surface cover, high population density, and eutrophication (Costadone and Sytsma, 2022; Song et al. 2022)

(Wang et al. 2023)

urban land use, GDP (gross domestic production), and population density were positively related to the emission of CO_2 from lakes.

1. Spatial-temporal characteristics of CO₂ emissions in urban lakes remain unclear

able 4 Case studies on CO ₂ fluxes (mmol m ⁻² d ⁻¹) in urban lakes.						Daytime only		
Studies	Cities (Country)	Lake number	Surface area (km²)	CO ₂ fluxes (mmol m ⁻² d ⁻¹)	Nobs	Methods	Sampling period	Sampling time
Xing et al. (2005)	Wuhan (China)	1	33	7.55 ± 3.64 (-31.96-86.95)	468	FCM	9:00-11:00	Apr. 2003 to Mar. 2004
Natchimuthu et al. (2014)	Linköping (Sweden)	1	0.0012	$1.1 \pm 6.7 (-9.8 - 16)$	27	FCM	12:00-15:00	Jun. to Oct. 2010
Zhao et al. (2017)	Nanjing (China)	1	3.7	60.05 (-5.78- 77.53)	200	FCM	daytime only	Jun. and Oct. 2014
Bergen et al. (2019)	Gelderland (Netherlands)	9	0.004635	$\textbf{79.17} \pm \textbf{33.33}$	/	FCM	24-h period	Jul. 2013 to May. 2014
Gorsky et al. (2019)	Williamsburg (USA)	15	0.0271	34.09 (32.89– 160.37)	45	FCM	8:00-11:00	Jun. to Aug. 2018
Peacock et al. (2019)	Uppsala (Sweden)	40	0.00159	17.08 (-4.25- 78.42)	40	HEM, BLM	10:00-16:00	30 May. and 1 Jun. 2018
Audet et al. (2020)	Silkeborg (Denmark)	37	0.002069	4.36 ± 5.52	146	HEM, BLM	08:00-16:00	Aug. and Nov. 2018, Mar. and Jun. 2019
Xiao et al. (2020)	Wuxi (China)	1	8.6	25 ± 13.63	48	WCE, BLM	10:00-15:00	2004-2015
Peacock et al. (2021)	Uppsala (Sweden)	9	0.001128	82.8	89	FCM	9:00-15:00	Apr. to Dec. 2018
Goeckner et al. (2022)	Manatee (USA)	5	0.01097	135 (-308-779.5)	65	FCM	10:00-14:00	Jun. 2019 and May. 2020
Yang et al. (2022)	Chengdu (China)	1	0.82	-655.2 ± 256.8	11	WCE, BLM	7:00-17:00	Jan. to Sep. 2020
Zhang et al. (2023)	Wuhan (China)	4	3.1-47.6	$\begin{array}{c} 5.26 \pm 18.55 \\ 2.03 \pm 11.29 \end{array}$		HEM, BLM	8:00-18:00	Oct. 2021 to Jun. 2022
This study	Wuhan (China)	1	47	8.76 ± 9.78 (-12.29- 32.69)	129,543	NDIR sensor, BLM	24-h period	Nov. and Dec. 2022, Mar. 2023

N_{obs}: Number of observations; FCM: Floating chamber method; HEM: Headspace equilibrium method; BLM: Boundary layer method; WCE: Water chemistry equilibrium.

2. The connection between CO₂ emissions and optical properties of DOM has rarely been reported

Organic carbon shares common pathways with CO_2 , and DOM degradation governs spatial and temporal variations in CO_2 production

(Begum et al. 2023; Ni et al. 2024)

Optical properties of DOM (molecular weight, aromaticity and fluorescent components) can indicate the sources of carbon, revealing the key drivers of CO_2 production and emissions (Zhou et al. 2018; Begum et al. 2023)

Sampling sites

Sampling campaigns

Sampling time

2022.11-2023.5
Three diurnal samplings in each dry and wet seasons

Sampling procedures

Water samples were taken every hour (n=24*6)

In situ measurements of CO₂ concentrations over every 24 h period

Sampling equipment

It began increasing around 18:00, continued to rise throughout the night, and started to decline around 6:00. The declining trend persisted during the daytime, with a steep decline typically starting around 10:00

Dry season Day: 38.58 ± 23.8 μmol L⁻¹ Night: 42.01 ± 20.2 μmol L⁻¹

Wet season Day: 20.70 ± 25.73 μmol L⁻¹ Night: 34.38 ± 31.19 μmol L⁻¹

Figure 2. Hourly variations in FCO_2 (mmol m⁻² d⁻¹) at Site T1 (a & b), T2 (c & d) and T3 (e & f) during the dry (a, c, and e) and wet (b, d and f) seasons.

Time	Hourly fluxes	Average flux	Absolute value
0:00	23.6	11.18	12.42
1:00	19.15	11.18	7.97
2:00	23.93	11.18	12.75
3:00	16.15	11.18	4.97
4:00	17.9	11.18	6.72
5:00	19.74	11.18	8.56
6:00	20.54	11.18	9.36
7:00	18.1	11.18	6.92
8:00	15.96	11.18	4.79
9:00	20.82	11.18	9.64
10:00	14.55	11.18	3.38
11:00	2.31	11.18	8.86
12:00	1.88	11.18	9.3
13:00	- 0.57	11.18	11.75
14:00	- 4.19	11.18	15.37
15:00	- 3.73	11.18	14.91
16:00	- 0.93	11.18	12.11
17:00	- 0.9	11.18	12.08
18:00	0.96	11.18	10.22
19:00	9.1	11.18	2.08
20:00	15.77	11.18	4.59
21:00	12.76	11.18	1.58
22:00	11.87	11.18	0.69
23:00	13.72	11.18	2.55
The opt	imal sampling tim	e for estimating w	hole-day CO ₂ emission

is around 10:00 in the morning

Wet season

1617181920212223 0 1 2 3

Supported by Potter and Xu 2023

Figure 4. Diel factors of CO_2 from the global lakes

Accounting for night-time CO₂ emissions can increase regional estimates by 70%

System name	Reference	Climate zone	Area (km ²)	Sampling date	Methods	Daytime	Nighttime	Ratio
Williams Lake	Anderson et al., 1999	Temperate	0.37	Apr. 1992, 1994	ECM	41.64	99.4	0.42
Toolik Lake 🕞	Eugster et al., 2003	Subarctic	1.5	²⁷ -31 Jul 1995	in ECM lizatio	h^{4}	aal lakos	0.34
Soppensee Lakedn	Eugster et al., 2003	Temperate	0.25	21 6 23 Sep. 1998			callages	0.75
Boreal lakes:1.25	Bolpagni et al., 2007	Temperate	0.05	<mark>2</mark> 9– VS Jul. 2005	FCM	79.8	218	0.37
Unnamed pond Tomporato Jakos	Ŏ ⁱ 71 ^t a ^{l., 2014}	Subtropical	0.0025	Jul. and Oct. 2013	FCM	tudo lake	44.88	0.5
remperate lakes.	Natchimuthu et al., 2014	Boreal	0.0012				31.8	-0.19
Subtropical lakes:	1015marella et al., 2015	Boreal	0.62	Jun. to Oct. 2010; 2(Weyhen	meyer et al.,	2015;3Zhan	g et al., 2023) 1.08
Kuivajärvi Lake	Erkkila et al., 2018	Boreal	0.62	11–26 Sep. 2014	FCM	53.57	25.06	2.14
Kuivajärvi Lake	Erkkila et al., 2018	Boreal	0.62	11–26 Sep. 2014	BLM	96.21	65.32	1.47
Lochaber Lake	Spafford and Risk, 2018	Temperate	13.5	21 Apr. and 8 Nov. 2016	FCM	10.87	19.56	0.56
Pleasant Lake	Czikowsky et al., 2018	Temperate	6	16 Sep. and 11 Oct. 2010	ECM	30	27	1.11
Pleasant Lake	Czikowsky et al., 2018	Temperate	6	16 Sep. and 11 Oct. 2010	BLM	25.5	20	1.28
Ngoring Lake R _{dn}	Han et al., 2020	Subtropical	610.7	^{Ju} The boundary layer	method ma	av fail to p	redict this	3.42
	Martinez-Cruz et al., 2020	Temperate	0.24	¹² -13 Jul 2015	ficantly inc	roacod ga	$\frac{4.67}{100}$	2.07
	Martinez-Cruz et al., 2020	Temperate	4.25	10-SHOLL-INEG DUT SIGIN		ieaseu ga:		0.78
BLM:>1	Shirokova et al., 2020	Boreal	0.016	26-efficiency at night d	ue to heat l	OSS1.67	10	-0.17
Lake Venasjön	Rudberg et al., 2021	Temperate	0.69	¹⁴ Jun. (Prodgraisek et al.	.2015: Holge	rson and R	avmond et al.	1.67
Lake Parsen	Rudberg et al., 2021	Temperate	0.13	28 Sep 25 Oct. 2018	FCM	30.24	^{19.44} 2016	1.56
Lake Ljusvattentjärn	Rudberg et al., 2021	Temperate	0.017	11 Jul 22 Aug. 2017	FCM	10.56	7.68 2010	1.38
Ulansuhai Lake	Zhang et al., 2022	Temperate	293	Apr Oct. 2019	FCM	-3.87	2.99	-1.29
Lake Kivu	Borges et al., 2022	Tropical	2700	23–24 Mar. 2007	BLM	9.1	6.76	1.35
Tangxun Lake	This study	Subtropical	47	Nov., Dec. 2022, Mar. 2023	BLM	7.68	9.68	0.79

Table 1. Case studies on diel variability of CO_2 fluxes (mmol m⁻² d⁻¹) from global lakes.

FCM: Floating chamber method; HEM: Headspace equilibrium method; BLM: Boundary layer method; Ratio: Day/night fluxes.

Tangxun Lake						
Componen ts	Excitati on max (nm)	Emissio n max (nm)	Openfluor compariso n	Descriptions and sources of DOM	Referenc es	
C1	300	393	57	Humic-like. Anthropogenic from wastewater and agriculture	(Coble, 2007; Chen et al., 2021)	
C2	255	458	65	Humic-like. Terrestrial	(Coble, 2007; Chen et al., 2021)	
C3	280	328	4	Protein-like, tryptophan- like. Autochthonous	(Coble, 2007; Lee et al., 2020)	
C4	270	294	2	Protein-like, tyrosine-like. Autochthonous	(Coble, 2007; Chen et al., 2018)	

Table 2. Description of the four components identified by PARAFAC analysis inTangxun Lake

More bioliable substrates (protein-like, usually from algae)

Figure 6. Distribution of CDOM concentration (A-D) in Tangxun Lake waters, its fluorescent components (E-H) and EEMs indices (I-L) during the dry and wet seasons

the relatively high optical indices in our study, i.e., FI > 1.9, SR > 1 and BIX > 1 suggest that biological metabolism dominates the DOM pool after receiving anthropogenic sources, making the lake protein-like dominant rather than humic-like.

Figure 7. Partial least squares path modelling (PLS-PM) linking changes with weather conditions (U_1 and T_2), physiochemical factors (EC and DO), TSI (TN, TP, and Chl-a) and DOM (a₂₅₄, FI, BIX, C1, C2, C3, and C4) to changes in CO_2 (c CO_2 and FCO_2) in the (a) daytime and (b) nighttime.

Nighttime

During the daytime, effects of TSI and DOM on CO_2 were insignificant, but at night, DOM had a major influence on CO₂, with TSI indirectly affecting CO₂ by regulating DOM dynamics

Plastan carcey collegary provide a 20 0 point intervectors collegary provide a 20 0 point intervectors collegary col

Evidence from other studies

Example 2 Seasonal pattern of diel changes in CO₂ emission fluxes from streams

where diel CO_2 emissions are governed by the riparian canopy cover in headwaters (affecting light penetration and primary production) and DOC (affecting the water color)

Gómez-Gener et al. 2021. Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions. Nature Geoscience 14(5), 289-294.

The v-shaped relationship between lake CO₂ emissions and Chl-a

when Chl-a was higher than 60 μg $L^{\text{-1}},$ CO $_{2}$ emissions increased with the increasing Chl-a

Zhang et al. 2024. Relationship between eutrophication and greenhouse gases emission in shallow freshwater lakes. Science of The Total Environment 925, 171610.

Prospects

Unique features in urban areas need special attention

artificial lighting can greatly stimulate nocturnal photosynthesis, disrupt natural photosynthesis, or hamper the microbial diversity and their community respiration in aquatic systems, ultimately affect the diel variability of CO₂ fluxes in urban lakes

Fonvielle, J. et al. Skyglow increases cyanobacteria abundance and organic matter cycling in lakes. Water Research **278, 123315** (2025).

Grubisic, M. Waters under Artificial Lights: Does Light Pollution Matter for Aquatic Primary Producers? *Limnology and Oceanography Bulletin* 27, 76-81 (2018).

Hölker, F. et al. Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night. Philosophical Transactions of the Royal Society B: Biological Sciences **370, 20140130 (2015).**

Take-home messages

- The Tangxun Lake acts as the net CO₂ source
- 10:00 is suitable for sampling to represent diel CO₂ fluxes
- the underestimation by 70% without nighttime data
- Eutrophication enhances daytime CO₂ uptake
- DOM (higher protein-like DOM fraction) degradation dominates nighttime CO₂ emissions

Publications

1. Wang, Y., Ma, B., Shen, S., Zhang, Y., Ye, C., Jiang, H. and Li, S. 2023. Diel variability of carbon dioxide concentrations and emissions in a largest urban lake, Central China: Insights from continuous measurements. Science of The Total Environment 912, 168987.

2. Wang, Y., Ma, B., Xu, Y.J., Shen, S., Huang, X., Wang, Y., Ye, S., Tian, X., Zhang, Y., Wang, T. and Li, S. 2024. Eutrophication and dissolved organic matter exacerbate the diel discrepancy of CO_2 emissions in China's largest urban lake. Environmental Science & Technology 58(47), 20968-20978. (Cover article)

Acknowledgement

Natural Science Foundation of China (42407083) to Dr Yang Wang Wuhan Institute of Technology to Dr Yang Wang (23QD43) and **Prof. Siyue Li** (21QD02)

Prof. Siyue Li from Wuhan Institute of Technology orcid.org/0000-0002-3097 6819

Email: syli2006@163.com

Prof. Y. Jun Xu from LSU

Thank you for your attention!

Yang Wang

□ (Surname) □ (Given name)

E-mail: seraphwong@126.com

ORCID: 0000-0003-1625 2651

ResearchGate: www.researchgate.net/profile/Yang_Wang487

The 14th International Symposium on

