Consequences of River Reconnection on Water Quality in Barataria Bay, LA

John R. White, Katie Bowes, Mercedes Pinzon, Peter Mates

College of the Coast & Environment

Levees - With control, comes consequences

Infrastructural

Land 2010 Coastal Sustainability Studio

River Reconnection A Possible Fix ?

Nutrient ??? Associated with Sediment Diversions

Denitrification Rates with River Sediment?

Mercedes Pinzon

Sample Collection

The diversion will deliver substantial NO_3^- to the basin

• How NO₃⁻ reduction rates will change over time as mineral river sediment covers organic marsh soil?

NO_3 Reduction Rate for cores spiked with 2 mg N L⁻¹

Conclusions

• Marsh initially will perform well

• Marsh Denitrification Rates may decline over time

• Most Nitrate will be in the open channels and bays

What Happens to Denitrification with Cold River Water ?

Triplicate Intact Cores at 4 temperatures 5, 8, 14, 20 C

Nitrate Reduction

Conclusion

- Timing of the Diversion is projected to be early in the year 5-10 C
- The spread of nitrate may stretch further into the basin

What about Phosphorus ?

Peter Mates

Current Marsh Total Phosphorus

antly nd re	Barataria	Marsh mg P/kg	Open Water mg P/kg
	Total P	677 ± 183	503 ± 89.5
	Total Inorganic P	197 ± 92.9 (30%)	209 ± 96.3 (41%)
	Total Organic P	479 ± 149.4 (70%) ^a	296 ± 106 (59%) ^b

- Marsh has significantly greater TP
- Barataria marsh and open water soils are organic

Barataria contains majority organic P

Mississippi River contains majority inorganic P

What Happens with River SRP ?

Phosphorus Retention Isotherm

Phosphorus Added To Water Column – Range of P Concentrations mg/L

- Spike 5 Replicate Sediment Cores
- Plot Flux vs. Water Column P Concentration

Equilibrium Phosphorus Concentration

Site	Mean EPC (mg P L^{-1})	
Barataria Open Water	0.016 ± 0.008	
Barataria Marsh	0.039 ± 0.015	

River PO₄ Concentration = $0.080 \text{ mg P L}^{-1}$

Barataria Bay Baseline Fractionation Results

Mississippi River Sediment

• River sediment - 43% of P in Fe/Al-P (Sutula et al., 2004)

• Fe/Al-P implication for bioavailable P release

• Deposited Sediment will release P later

Conclusions

- Mississippi River will raise Total P
- River fine particulates contain elevated Fe/Al-P
- Fe/Al-P will decrease under reduced condition
- Harmful Algal Blooms
 - Dictated by presence of Microcystis and cyst abundance

Ρ

 $P-Fe^{3+} \longrightarrow Fe^{2+}$

Going forward, Monitoring will be critical to determine if conditions exist for HABs formation in Barataria Bay