Investigation of salt marsh platform vegetation stress indicators to reveal potential marsh loss mechanisms

Elizabeth Watson

Ecology & Evolution Stony Brook University, New York

ponds are captured by tidal channel networks

A. Maquoit Bay, Brunswick, ME

B. Webhannet, Wells, ME

Wilson et al., 2010

3 types of pools: waffle marsh, natural pools, OMWM

Smith et al., 2021, Estuaries & Coasts

These 3 types of pools are found in different marshes

Smith et al., 2021, Estuaries & Coasts

the marsh interior is poorly flushed

research objectives

- To generate multidimensional measures of plant stress at pool margins for comparison with nearby better drained areas.
- To determine whether there are indicators of ecohydrologic stress adjacent to pools

Plants growing along pool margins are exposed to hydrologic stress

Hypothesis

Mashomack, NY

Tuckahoe Island, NJ

Pine Barrens Ecoregion

	Waquoit Bay	Mashomack	Tuckahoe River
tidal range	0.61 m	0.74 m	1.1 m
salinity	31.8 ‰	30.2 ‰	24.1 ‰
soil	very poorly drained		
elevation	0.19 m _{navd88} 0.01 m _{MHW}	0.27 m _{navd88} 0.02 m _{MHW}	0.78 m _{navd88} 0.25 m _{MHW}
vegetation	Spartina alterniflora		
geomorph	back barrier	back barrier	riverine
history	ditched, not grid-ditched		un-ditched
pools	natural, isolated pools		
x 1B ck 2A ack 2B Waquoit 2B			

Commun

Tuckahoe 1A Tuckahoe 1B Tuckahoe 2B Tuckahoe 2A Source: Earl, Marzer, Earlt Geogenpoletor

Upward flow is common along pool margins

Chamber-based measures showed lower CO₂ update but enhanced methane emissions

Lower CO₂ assimilation adjacent to ponds

Waquoit Bay spectral indices show evidence of plant stress around ponds

Collected multispectral drone imagery

- 6 cm resolution
- segmented imagery to delineate ponds (GEE)
- Compared NDVI around ponds (1m) with that around "control" segments

Reduced NDVI along pond margins

conceptual model of marsh platform persistence

conclusions & future directions

- Significant rates of salt marsh loss are occurring in the Northeastern US, which are not well predicted or hindcast by models
- This study argues for a much stronger focus on how sediment biogeochemistry and groundwater levels shape plant stress, as well related environmental factors

acknowledgements

Indigenous groups

- Wampanoag (MA)
- Manhanset (NY)
- Lenni Lenape (NJ)

Antonio Zevola Faith Echijiele Rupert Ikeh

