Understanding the Great Lakes: It is more than _____ just Phosphorus

Alan Steinman, PhD Allen and Helen Hunting Research Professor Annis Water Resources Institute – Grand Valley State Univ.

Outline

- Overview of Great Lakes
- Drowned River Mouth Lakes/Coastal Wetlands
- Great Lakes Sinkholes
- Salinization?
- Summary

U.S. Army Corps of Engineers, Detroit District

Project GLEAM: Mapping Individual Stressors Across the Great Lakes

Modified from Dave Allan, UM

Cumulative established aquatic invasives in the Great Lakes, by vector of introduction.

No new introductions have been attributed to ballast water since 2006.

Zebra Mussel

Data: Tom Nalepa, NOAA

Benthification of Great Lakes: pre-dreissenid mussels

Benthification of Lake Michigan: post-dreissenid mussels

Adapted from Hecky et al. (2004) CJFAS

Photo courtesy of S. Higgins – U. of Waterloo

Loss of Coastal Habitat ~50% of coastal wetlands lost

Great Lakes Coastal Wetlands: Impacts

- Development
- Nutrient loading
- Invasive species
- Fragmentation
- Hydrology

Sulfate (mg/kg/d)

- Very low release rates at treeline
- Higher release rates at depths >0.25m

Phosphate (mg/kg/d)

- Declining release rate with water depth

Base Water Level

Water Level Scenarios: PO₄

Decline:

- > 0.4 m; then inundation > 0.8 m; then inundation
- > 1.5 m; then inundation

Increase: ► 0.4 m

-0.4 m decline: 141 ha*

-0.8 m decline: 229 ha*

-1.5 m decline: 383 ha*

+0.4 m increase: 25 ha*

Phosphate: Muskegon Lake

Water Level Change (m)	Area Exposed / Flooded (ha)
- 0.4	140.7 (exposed)
-0.8	229.1 (exposed)
-1.5	382.8 (exposed)
+0.4	25.4 (flooded)

Steinman et al. (2012) JGLR

Water Level Summary

- Large potential nutrient release from coastal wetland sediments
- Release dynamics vary with nutrient
- Spatial variability both within wetlands (veg class) and among wetlands
- Fate of nutrients needs to be determined

Drowned River Mouth Systems

Muskegon Lake

Parameter	Muskegon
Surface Area (km ²)	16.8
Mean Depth (m)	7.1
Max. Depth (m)	24
HRT (d)	21
Mean TP (µg/L)	~28
Mean Chl <i>a</i> (µg/L)	~9
Trophic status	Meso/Eutrophic

Sawmills

Muskegon Lake, MI: 1900-1960

Open access current and archived data: www.gvsu.edu/buoy

TEMP

DO

Implanting ultrasonic
emitters
Hydrophone and
passive receivers detect
unique frequencies

Before Turnover

After Turnover

Bear Lake TP Concentration: 45-60 μg/L TMDL: 30 μg/L

Objectives

Primary: Restore additional habitat in the Muskegon Lake Area of Concern

Secondary: Don't contribute to excess phosphorus to downstream Bear Lake

Hydrography and TP Concentrations

Sediment Phosphorus

- Porewater
- Isotherms
- Sediment core incubations
- Sediment fractionation

Peeper SRP (mean ± SD)

Depth	West Field (undredged)	East Field (dredged)

Steinman & Ogdahl (2016) ESPR

P Release Experiment

 Simulate reconnection of Bear Creek water (30 ppb) to muck field sediments

Smit & Steinman (2015) Wetlands

July 2015

Total Phosphorus: West Pond

Hassett and Steinman (2022) Land

Submerged Karst Sinkholes in the Great Lakes

Bopi Biddanda

Bedrock Aquifers in the Great Lakes Basin

http://water.usgs.gov/ogw/pubs/WRI004008/WRIR_00-4008.pdf

- Lakes MI and Huron lined by Paleozoic Carbonate Aquifers

On-land Sinkholes and Submerged sinkholes in NW Lake Huron

Primary Production Process

Oxygenated Water Column

In Light Photosynthesis

Purple Cyanobacteria:

Oxic and Anoxic

Anoxic, Sulfate-rich Groundwater

In Light or Darkness Chemosynthesis (White Sulfur Oxidizing Bacteria and Archaea)

Geobiology 2012 mSystems 2021 Ecol. Evol. 2024

Geobiology 2012 mSystems 2021 Ecol. Evol. 2024

Diurnal Changes

- In daylight, purple photosynthetic filaments move up towards sunlight
- At night, chemosynthetic white filaments move up to scavenge remaining O₂ while using H₂S below
 J. Great Lakes Res. 2023

Typical Water-Column Features over a Lake Huron Sinkhole

Nature Education Knowledge 2012

<u>Where else "On Earth" are such microbial mat communities found?</u>

Freshwater Salinization

2010

2015

NaCl deicer applied millions of metric tons 35 30 **Road salt** 25 application: 20 15 10 1975: 8 million 5 metric tons 1975 1980 1985 1990 1995 2000 2005 Year 2015: 32 million Figure 1. Metric tons of sodium chloride (NaCl) used for deicing purposes in the US from metric tons 1975-2017. Graph redrawn from Kelly et al. (2019); data from Kelly and Matos (2014).

Road Salt (Chloride) Impacts in Freshwater Ecosystems

- Chloride is corrosive (pavement, concrete, cars, pipes, appliances, etc.)
- Detrimental impacts at all trophic levels
 - Decreased reproduction
 - Increased mortality
 - Decline in biodiversity
- Effects seen below chronic threshold of 230 mg/L (EPA) and 150 mg/L (Michigan)

High O₂

Excess Road Salt

- Dense saline layer at bottom
- Prevents seasonal mixing
- Low oxygen -
- Accumulation of reduced analytes

Study Location: Tri-Lake Region

Church Lake: CI⁻ and TP

Chloride (mg/L)

Foley and Steinman (2023) Sci. Total Environ.

Allan et al. (2013) PNAS

Threats to the Great Lakes

• Diverse

Nonpoint runoff, toxics, invasives, development

- Changing in importance over time
 - May be diminishing, stable, or increasing
- Differ by location
 - E.g., upper vs. lower lakes and within a lake
- Multiple stressors influencing basin biogeochemistry; requires unique diagnostic studies as the biology, geology, and chemistry varies from place to place

Thank you

LAKE

STOL:

W.G. JACKSON

MUSKEGON M

5

steinmaa@gvsu.edu

Category	Stressor	Pooled Weight (%)	Category	Stressor	Pooled Weight (%)
Aquatic Habitat	Hypoxia	2.83	Fisheries	<i>Diporeia</i> decline	-
Aquatic Habitat	Industrial ports and harbors	2.91	Invasive Species	Ballast risk	3.81
Aquatic Habitat	Light pollution	1.82	Invasive Species	Invasive fish	3.54
Aquatic Habitat	Marinas/boating	2.43	Invasive Species	Invasive mussels	4.02
Aquatic Habitat	Shipping lanes	2.08	Invasive Species	Invasive wetland plants	3.04
Aquatic Habitat	Shoreline extensions	2.48	Invasive Species	Sea lampreys	3.65
Aquatic Habitat	Shoreline hardening	2.89	Invasive Species	Emerging fish diseases	-
Aquatic Habitat	Dams (altered flow, nutrient, and sediment regimes)	3.21	Invasive Species	Harmful algal blooms	-
Aquatic Habitat	Channel dredging	-	Invasive Species	Invasive littoral plants	-
Aquatic Habitat	Dams (barriers to fish passage)	-	Invasive Species	Invasive plankton	-
Aquatic Habitat	Submerged cables and pipelines	-	Invasive Species	Nuisance benthic algal blooms	-
Climate Change	Changing water level	3.68	Nonpoint pollution	CSOs	2.54
Climate Change	Decreasing ice cover	3.38	Nonpoint pollution	N loading	3.02
Climate Change	Warming water temperature	3.89	Nonpoint pollution	P loading	3.42
Coastal Development	Coastal development	3.21	Nonpoint pollution	Sediment loading	3.03
Coastal Development	Coastal mines	2.64	Toxic Chemicals	AOCs	3.27
Coastal Development	Coastal power plants	2.68	Toxic Chemicals	Metals – biomagnifying	2.45
Coastal Development	Coastal recreational use	1.84	Toxic Chemicals	Metals – non-biomagnifying	2.78
Coastal Development	Coastal road density	2.69	Toxic Chemicals	Organics – biomagnifying	3.40
Fisheries	Aquaculture	2.00	Toxic Chemicals	Emerging toxic chemicals	-
Fisheries	Commercial fishing	2.81	Toxic Chemicals	Organics – non- biomagnifying	-
Fisheries	Native fish stocking	2.37	Toxic Chemicals	Pharmaceutical loading	-
Fisheries	Non-native fish stocking	2.98	Toxic Chemicals	Toxic pesticides	-
Fisheries	Recreational fishing – charter	2.20	Water Withdrawals	Inland and groundwater withdrawals	-
Fisheries	Recreational fishing (non- charter)	-	Water Withdrawals	Great Lakes withdrawals	-

Blooms occur in the GL spatially with elevated TP

Total Phosphorus Concentrations (μ g/L) based on lake-wide cruises conducted by Environment and Climate Change Canada and the United States Environmental Protection Agency.

Interannual variability in Lake Erie bloom size

Limnol. Oceanogr. 65, 2020, 2984–2998 © 2020 The Authors. Limnology and Oceanography published by Wiley Periodicals LLC on behalf of Association for the Sciences of Limnology and Oceanography. doi: 10.1002/lno.11569

A first assessment of cyanobacterial blooms in oligotrophic Lake Superior

Robert W. Sterner ^(D), ^{1*} Kaitlin L. Reinl ^(D), ¹ Brenda Moraska Lafrancois, ² Sandra Brovold, ¹ Todd R. Miller³

¹Large Lakes Observatory, University of Minnesota Duluth, Duluth, Minnesota ²National Park Service, Ashland, Wisconsin

³Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin

HABs and Internal P Loading

Ammonia (mg/kg/d)

- Slight asymptote with DRM sites
- Curvilinear function at Saginaw sites