Linking Phosphorus Storage Mechanisms with Removal Performance in Everglades Stormwater Treatment Wetlands

Zoe Spielman¹, Patrick Inglett¹, Praveen Subedi¹

¹University of Florida Soil, Water, and Ecosystem Sciences Department

Cell 2 of STA-1E (South Florida Water Management District)

Cell 2 of STA-1E (South Florida Water Management District)

Introduction

- Constructed wetlands (CWs)
- Vegetation types
 - Emergent aquatic vegetation (EAV)
 - Submerged aquatic vegetation (SAV)
- Forms of phosphorus (P)
 - Inorganic (Pi) and organic (Po)
 - Determined using operationally defined fractionation schemes

SAV and EAV in Cell 4 of STA-2 (South Florida Water Management District)

Case Study: Everglades Stormwater Treatment Areas (STAs)

Map of Everglades Stormwater Treatment Areas in relation to the Everglades Agricultural Area and Everglades Protection Area (South Florida Water Management District)

- South Florida, USA
- Designed to remove nutrients from Everglades Agricultural Area prior to entering Everglades Protection Area (EPA)
 - Discharge very low P concentration water into EPA
- Currently 5 Everglades STAs in operation
 - Each Everglades STA consists of flow-ways (FWs) divided into cells
- Have removed 3,000+ metric tons of P over their period of record
- Can they meet water quality-based effluent limit (WQBEL) starting in 2026?

Prior Everglades STA Research

- Accreted soil P storage
 - Mechanisms associated with P forms
 - EAV systems: biotic
 - SAV systems: abiotic calcium carbonate (CaCO₃)-associated
 - Underwater photosynthesis resulting in co-precipitation of P with CaCO₃
- P removal performance
- **Unknown:** Relationship between P removal performance of Everglades STAs and forms/trends of accreted soil P being stored

Objective and Hypotheses

Collecting sediment cores in Cell 6 of STA-2 (South Florida Water Management District)

 <u>Objective</u>: Evaluate the effect of nutrient loading on forms of P and mechanisms of P storage in accreted soil in Everglades STA FWs of varying performances

<u>Hypotheses:</u>

- Better performing FWs
 - P forms:
 - Acid-extractable
 - Residual
 - Abiotic CaCO₃-associated mechanism
- Under-performing FWs
 - P forms:
 - Bicarbonate
 - Microbial biomass
 - Alkali-extractable
 - Biotic mechanisms

- Benchmark sites

Methods: Performance Designations + Soil Sampling and Chemical Analysis

- Performance designations determined based on average outflow total phosphorus (TP) concentrations and % TP loads retained from their startup until WY2021 when sampling occurred
- Intact triplicate cores of accreted soil collected along a transect in May-December 2021
 - Transect sampling stations were considered repeated measures
- Chemical analysis
 - Total nutrients (Al, C, Ca, Fe, K, Mg, N, P, and S)
 - Ammonium oxalate extractable Al, Fe, P

Intact soil cores collected for this project

Methods: Soil Phosphorus Fractionation

- Modified from Ivanoff et al. (1998) and Reddy et al. (2019)
- P was separated into 8 forms based on sequential soil extractions
- Storage of each P form as a % of TP was calculated

Phosphorus fractionation scheme

Methods: Statistical Analysis

- Kruskal-Wallis test was used to compare effect of performance on storages of P forms
 - Dunn's test was used for multiple means comparison
- Principal component analysis (PCA) was used to ordinate sites according to P forms and selected biogeochemical parameters

SAV in Cell 8 of STA-2 (South Florida Water Management District)

Results: Performance Designations

• Well-performing:

- < 19 µg L⁻¹ outflow TP concentration
- > 75% TP load retained
- STA-2 FW4
- STA-3/4 CFW

• Variable-performing:

- > 19 µg L⁻¹ outflow TP concentration
- > 75% TP load retained
- STA-1E EFW
- STA-2 FW3

• Under-performing:

- > 19 μg L⁻¹ outflow TP concentration
- < 75% TP load retained
- STA-1E CFW
- STA-5/6 FW1

Performance designations of STA-1E EFW, STA-1E CFW, STA-2 FW3, STA-2 FW4, STA-3/4 CFW, and STA-5/6 FW1 based on water quality parameters from their startup until WY2021

	Average Outflow TP	Average TP Load	Performance
FW	Concentration (µg L ⁻¹)	Retained (%)	Designation

Results: Effect of performance on storages of P forms

- Larger storages of...
 - MBP and residual P in wellperforming compared to under-performing
 - Bicarbonate-Pi in variableperforming compared to wellperforming
 - NaOH-extractable forms in underperforming

Letters in parentheses represent Dunn's test results for multiple means comparisons of statistically significant Kruskal-Wallis test results (p-value ≤ 0.01) Degrees of freedom = 2

	Well-	Variable-	Under-
P Form	performing	performing	performing
	· • •		

verse of phoephowie (D) former as a 0/ of total D

Results: Distribution of Phosphorus Forms

Results: Mechanisms of P Storage

Cell 2 of STA-1E (South Florida Water Management District)

• The PCA alludes to four P storage mechanisms:

- 1. Biotic storage mechanisms
 - Previously observed in EAV dominated STAs
 - Variable- and under-performing FWs
 - Associated with bicarbonate P, MBP, HCI-Po

Results: Mechanisms of P Storage (cont.)

- The PCA alludes to four P storage mechanisms:
 - 2. Abiotic CaCO₃-associated mechanism
 - Previously observed in SAV dominated STAs
 - Co-precipitation of phosphorus with CaCO₃
 - Well- and variable-performing systems
 - Associated with HCI-Pi, Ca, Mg, and residual P

SAV collected from Cell 3 of STA-2 (South Florida Water Management District)

Results: Mechanisms of P Storage (cont.)

STA-5/6 FW1 (South Florida Water Management District)

- The PCA alludes to four P storage mechanisms:
 - 3. Abiotic Al/K-associated mechanism
 - Well-performing systems
 - Can occur alongside abiotic CaCO₃associated mechanism or by itself
 - 4. Abiotic Fe-associated mechanism
 - Under-performing systems
 - Associated with NaOH-extractable P and Fe

Conclusions

- Well-performing FWs
 - Outflow TP concentrations < 19 μ g L⁻¹ and TP loads retained > 75%
 - Larger storages of MBP and residual P
 - Abiotic CaCO₃-associated and Al/K-associated storage mechanisms
- Variable-performing FWs
 - Outflow TP concentrations > 19 μ g L⁻¹ and TP loads retained > 75%
 - Larger storages of bicarbonate Pi
 - Biotic and abiotic CaCO₃-associated storage mechanisms
- Under-performing FWs
 - Outflow TP concentrations > 19 μ g L⁻¹ and TP loads retained < 75%
 - Larger storages of NaOH-extractable forms
 - Biotic and abiotic Fe-associated storage mechanisms

Conclusions (cont.)

Cell 2A of STA-3/4 (South Florida Water Management District)

Management implications

- Vegetation
 - EAV/SAV mix with higher proportions of SAV
- Future research
 - Abiotic storage mechanisms associated with Al, Fe, and K
 - Different associations observed in different studies
 - Judy et al. (2021): Ca, K, and P
 - Julian et al. (2021): Al, Fe, and P
 - This study: (1) Al and K, (2) Fe and P
 - Fe-associated mechanism
 - pH destabilization at pH < 6.5?
 - Not characteristic of Everglades with a neutral pH
 - Are these FW specific mechanisms?
 - No two STA FWs are the same

Acknowledgements

- South Florida Water Management District
 - Project funded by "Phosphorus Dynamics in the STAs" Study
 - Orlando Diaz
 - Jacob Dombrowski
 - Jill King
 - Odi Villapando
- Master's thesis committee members
 - Dr. Patrick Inglett, UF Soil, Water, and Ecosystem Sciences Department
 - Dr. Stefan Gerber, UF Soil, Water, and Ecosystem Sciences
 Department
 - Dr. David Kaplan, UF Environmental Engineering Department
- Wetland Biogeochemistry Laboratory
 - Dr. Praveen Subedi
 - Dr. Thioro Fall
 - Ankita Datta
 - Lexis Massey
 - Varija Mai
 - Zach Moore
- Dr. Alan Wright for soil sampling
- UF Water Institute

SOIL, WATER, AND ECOSYSTEM SCIENCES

