Drivers of Spatial and Temporal Variability in CH,
Emissions from a Brackish Coastal Wetland _
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Salt Marsh Accretion Response to
Temperature eXperiment (SMARTX)
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Methane emissions were consistently higher from drier Spartina (C, grass)
sites than from wetter Schoenoplectus (C, sedge) sites.
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Methane emissions were consistently higher from drier Spartina (C, grass)
sites than from wetter Schoenoplectus (C, sedge) sites.
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Schoenoplectus had a higher rate
of root oxygen loss than Spartina
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However, vegetation effects in warmed plots have shifted over time.
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Does this interannual variability affect our
ability to predict future CH, emissions?




Can we use 8 years of CH, fluxes to predict what wil

happen next year?
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Evaluated six-month forecasts of CH, emissions using 10 models
at each plot
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Ability to forecast CH, emissions decreases in warmed plots,

particularly with sedges.
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Can we improve predictability with spatial averaging?
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Automated flux chambers
(temporal variability)

Long-term field experiments

Static flux chambers Short-term mesocosm
(spatial variability) experiments




Static chambers also capture seasonal and interannual variability, but they
miss the high-temporal variability picked up by autochambers.
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Patterns in CH, emissions are highly variable across years, likely driven by
shifting temperature and salinity
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Pulses of high CH, are potentially linked to high water events.
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Pulses of high CH, are more frequent and more intense under warming.
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Next steps: trying to stimulate “hot moments”
experimentally to determine the underlying mechanisms




What do we know (and what don’t we know)? _..e ..

e caadbhdd o i Sl e

w * Variability in magnitude and timing of CH, fluxes from Coatal wetlnds :
can be attributed to shifts in ; ; , and =

~ + Warming increases CH, emissions, but also increases variability,

< decreasing our ability to predict CH, dynamics

* We can improve predictions with more spatial data

« Magnitude and predictability of CH, emissions vary across plant
B communities

» CH, emissions are higher from grasses but more variable from
sedges

. * Hot moments of CH, emissions are linked to rising water level and
| increase in frequency and intensity under warming

o Still need to determine underlying mechanisms
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