Drivers of Spatial and Temporal Variability in CH₄ Emissions from a Brackish Coastal Wetland

Genevieve Noyce, Abigail Lewis, Katie Haviland, Alia Al-Haj, Roy Rich, and Pat Megonigal Smithsonian Environmental Research Center

-1.5 to 1510 mg CH₄ m⁻² day⁻¹

7.7 to 4693 mg C m⁻² day⁻¹ (long term burial) Rosentreter et al., 2021

Flooding and Salinity

Warming

Plant Community

Global Change Research Wetland (GCReW)

Chesapeake Bay

Organic Soil

Spartina patens (C₄)

Schoenoplectus americanus (C₃)

Salt Marsh Accretion Response to Temperature eXperiment (SMARTX)

C₄ Site (grasses)

C₃ Site (sedges)

C₄ Site (grasses)

C₃ Site (sedges)

Methane emissions were consistently higher from drier Spartina (C_4 grass) sites than from wetter Schoenoplectus (C_3 sedge) sites.

Methane emissions were consistently higher from drier Spartina (C_4 grass) sites than from wetter Schoenoplectus (C_3 sedge) sites.

Haviland & Noyce (2024), Biogeosciences; Lee et al. (2025), Science Advances oxidation

Haviland & Noyce (2024), Biogeosciences; Lee et al. (2025), Science Advances oxidation

However, vegetation effects in warmed plots have shifted over time.

Does this interannual variability affect our ability to predict future CH₄ emissions?

Can we use 8 years of CH₄ fluxes to predict what will happen next year?

Evaluated six-month forecasts of $\rm CH_4$ emissions using 10 models at each plot

Lewis et al., *under review*

Time series models

- ARIMA
- ETS
- prophet
- EDM
- Climatology

Machine learning models (meteorological drivers)

- Random forest
- Elasticnet
- XGBoost
- Support Vector Machine
- Bayesian Regularized Neural Network

Ability to forecast CH_4 emissions decreases in warmed plots, particularly with sedges.

Can we improve predictability with spatial averaging?

Abby Lewis

Lewis et al., *under review*

Static chambers also capture seasonal and interannual variability, but they miss the high-temporal variability picked up by **autochambers**.

Patterns in CH₄ emissions are highly variable across years, likely driven by shifting temperature and salinity

- Warm spring in 2024 led to unusually high fluxes early in the year, but lower throughout the summer and fall
- Higher salinity in 2022 and 2023 suppressed fall fluxes compared to 2021

Pulses of high CH_4 are potentially linked to high water events.

Pulses of high CH₄ are more frequent and more intense under warming.

Next steps: trying to stimulate "hot moments" experimentally to determine the underlying mechanisms

Alia Al-Haj

What do we know (and what don't we know)?

- Variability in magnitude and timing of CH₄ fluxes from coastal wetlands can be attributed to shifts in flooding, salinity, temperature, and vegetation
- Warming increases CH₄ emissions, but also increases variability, decreasing our ability to predict CH₄ dynamics
 - · We can improve predictions with more spatial data
- Magnitude and predictability of CH₄ emissions vary across plant communities
 - CH₄ emissions are higher from grasses but more variable from sedges
- Hot moments of CH₄ emissions are linked to rising water level and increase in frequency and intensity under warming
 - Still need to determine underlying mechanisms

Thanks to numerous technicians, postdocs, volunteers, and interns in SERC's Global Change Ecology, Biogeochemistry, and Technology in Ecology Labs for data collection and experiment maintenance! <u>noyceg@si.edu</u>

Environmental System Science Program

Awards DE-SC0014413, DE-SC0019110, DE-SC002111, DE-SC0021131, DE-SC0024327

