

Tradeoffs in nutrient retention and greenhouse gas fluxes in restored agricultural wetlands

Justin Murdock and Zöe Porter

Center for the Management, Utilization, and Protection of Water Resources

Tennessee Tech University

South Fork Forked Deer River, Lauderdale County TN. Google Earth

ian.umces.edu

J. Thomas (ian.umces.edu/media-library)

U.S. Department of Agriculture Natural Resources Conservation Service

Conservation Easement Boundary

Private Procerty Goals of the USDA Wetlands Reserve Enhancement Partnership (WREP) program: (Previously WRP)

 Voluntary program to restore agricultural wetlands –
Potect habitat that benefits migratory birds and wetland-dependent wildlife; federal and state threatened and endangered species
Restore wetland function. (Increase nutrient retention and reduce GHG releases)

WREP Function Goal: 2022-present The Mississippi River Basin Healthy Watershed Initiative (MRBI) Reduce nutrient (nitrogen and phosphorus) and sediment loading into the Gulf

(Brown et al., Freshwater Science in press)

Wetland sub-habitats (veg/hydro) High potential spatial and temporal variability

Remnant Forest

Tree Plantings

Shallow Water Area

Natural Regeneration

M. Wilkinson, The Nature Conservancy

Soil Cores

- 35 easements
- ~1200 cores
- NH₄, NO₂, NO₃, PO₄ retention rates
- Denitrification rates
- Soil properties
- 1-23 years post restoration

(Womble et al., submitted) (Murdock et al., in prep)

- 35 wetland easements •
- 7 habitats
- 1-23 years old
- 981 cores

*through shallow soils, to land surface, then overland

Golden, Heather E. et al. "Hydrologic connectivity between geographically isolated wetlands and surface water systems: A review of select modeling methods." Environ. Model. Softw. 53 (2014): 190-206.

Project Questions:

What restoration strategies (vegetation and hydrology) optimize nutrient and GHG fluxes across seasons?

Are there tradeoffs in nutrient retention and GHG production?

How do these processes differ in surface waters and shallow groundwaters across restoration strategies?

3 easements in West Tennessee,

• 11-16 years since restoration.

Measure nutrient and GHG flux rates

- across different restoration practices
- above and below the soil surface
- across seasons: Spring (Apr), Summer (Jul), Winter (Dec) for 2 years

Restoration Habitats

Restoration habitat types are

- A. Created shallow water
- B. Natural regeneration
- C. Remnant forest
- D. Tree planting
- E. Natural wetland
- F. Cropfield

- 3 locations per habitat with paired shallow/deep cores for flux measurements
- 45 shallow, 45 deep cores per season
- Cores for soil structure and chemistry

Incubation Procedure

- Nutrients at 6, 24, 48 hours ٠
- Gases at 24, 48 hours •

- and micronutrients.
- 1 mg/L PO₄-P

Incubation Core Design

Surface Injection Method – Surface Water

Incubation Core Design

Deep Injection Method – Shallow Groundwater

Mean Nutrient Flux Rates - 48h

Nutrients vs. Habitat

- Mean nutrient flux rates at 48h sample timepoint by habitat type (all seasons combined).
- Points of Interest:
 - Mean NH₄, NO₂, & NO₃ flux rates are significantly different between habitat types in <u>deep</u> cores (F=10.75; p<.0001, F=9.137; p.0001, F=3.639; p=0.0041 respectively).

Mean Nutrient Flux Rates - 48h

Nutrients vs. Habitat

- Mean nutrient flux rates at 48h sample timepoint by habitat type (all seasons combined).
- Points of Interest:
 - Mean NH₄, NO₂, & NO₃ flux rates are significantly different between habitat types in <u>deep</u> cores (F=10.75; p<.0001, F=9.137; p.0001, F=3.639; p=0.0041 respectively).
 - PO₄ flux in surface (+) vs. deep (-) cores

Mean Nutrient Flux Rates - 48h

Nutrients

vs. Habitat & Season

- Mean nutrient flux rates at 48h sample timepoint by habitat type & season.
- Points of Interest:
 - Mean PO₄, NO₂, & NO₃ flux rates are significantly different between seasons in <u>surface</u> cores (F=7.619, p=.0007; F=5.7821; p=.0039; F=12.138, p<.0001 respectively).

Mean Nutrient Flux Rates - 48h

Nutrients

vs. Habitat & Season

- Mean nutrient flux rates at 48h sample timepoint by habitat type & season.
- Points of Interest:
 - Mean PO₄, NO₂, & NO₃ flux rates are significantly different between seasons in <u>surface</u> cores (F=7.619, p=.0007; F=5.7821; p=.0039; F=12.138, p<.0001 respectively).
 - All mean nutrient flux rates are significantly different between seasons in <u>deep</u> cores (F=13.2712, p<.0001; F=4.078; p=.0192; F=5.87, p<.0001; F=29.40, p<.0001 respectively).

Mean Nutrient Flux Rates - 48h

Nutrients vs. Habitat & Season

- Mean nutrient flux rates at 48h sample timepoint by habitat type & season.
- Points of Interest:
 - Mean PO₄, NO₂, & NO₃ flux rates are significantly different between seasons in <u>surface</u> cores (F=7.619, p=.0007; F=5.7821; p=.0039; F=12.138, p<.0001 respectively).
 - All mean nutrient flux rates are significantly different between seasons in <u>deep</u> cores (F=13.2712, p<.0001; F=4.078; p=.0192; F=5.87, p<.0001; F=29.40, p<.0001 respectively).
 - PO₄ flux in surface (+/-) vs. deep (-) cores

Mean Gas Flux Rates - 48h

Gases vs. Habitat

- Mean gas flux rates at 48h sample timepoint by habitat type.
- Points of Interest:
 - Mean N₂ & CH₄ flux rates are significantly different between habitat types in <u>surface</u> cores (F=2.91, p=.0161; F=10.76, p<.0001 respectively).

Mean Gas Flux Rates - 48h

Gases vs. Habitat

- Mean gas flux rates at 48h sample timepoint by habitat type.
- Points of Interest:
 - Mean N₂ & CH₄ flux rates are significantly different between habitat types in <u>surface</u> cores (F=2.91, p=.0161; F=10.76, p<.0001 respectively).
 - Mean N₂, N₂O, & CH₄ flux rates are significantly different between habitat types in <u>deep</u> cores (F=2.61, p=.0278; F=5.29, p=.0002; F=10.05, p<.0001 respectively).

Mean Gas Flux Rates - 48h

Gases vs. Habitat

- Mean gas flux rates at 48h sample timepoint by habitat type.
- Points of Interest:
 - Mean N₂ & CH₄ flux rates are significantly different between habitat types in <u>surface</u> cores (F=2.91, p=.0161; F=10.76, p<.0001 respectively).
 - Mean N₂, N₂O, & CH₄ flux rates are significantly different between habitat types in <u>deep</u> cores (F=2.61, p=.0278; F=5.29, p=.0002; F=10.05, p<.0001 respectively).
 - \circ CH₄ flux in inundated sites

Mean Gas Flux Rates - 48h

Gases

vs. Habitat & Season

- Mean gas flux rates at 48h sample timepoint by habitat type and season.
- Points of Interest:
 - Mean N₂, O₂, & N₂O flux rates are significantly different between seasons in <u>surface</u> cores (F=3.35, p=.039; F=61.60, p<.0001; F=11.62, p<.0001 respectively).

Mean Gas Flux Rates - 48h

Gases

vs. Habitat & Season

- Mean gas flux rates at 48h sample timepoint by habitat type and season.
- Points of Interest:
 - Mean N₂, O₂, & N₂O flux rates are significantly different between seasons in <u>surface</u> cores (F=3.35, p=.039; F=61.60, p<.0001; F=11.62, p<.0001 respectively).
 - Mean N₂ & N₂O flux rates are significantly different between seasons in <u>deep</u> cores (F=16.46, p<.0001; F=10.58, p<.0001; F=10.05, p<.0001 respectively).

Surface Water Tradeoffs

Shallow Groundwater Tradeoffs

Insights for Restoration Planning

- Inundated areas generally had different rates that dry areas.
 - Higher N and P retention
 - Highest CH_4 and N_2O release
- Dry areas were similar in flux rates
 - Nat Regen had high N₂ release
 - Croplands had high N₂O release
- Nutrient/GHG tradeoffs occurred
 - Surface Waters
 - Locations with highest NO_3 retention and N_2 release had highest $\mathrm{N}_2\mathrm{O}$ release
 - Locations with the highest PO_4 retention had the highest CH_4 release
 - Shallow Groundwater
 - High NO₃ retention coincides with high N₂O and CH₄ release
- Season variation >> habitat variation
- Groundwater has more consistent nutrient retention than surface water; Keep water on wetlands after a flood

USDA CEAP Wetlands

