Hydrology & Water Chemistry in Isolated Pools along an Urban Ephemeral Stream in South Central Texas

Jeffrey Hutchinson University of Texas at San Antonio

Introduction

- Ephemeral streams are common globally and flow into perennial rivers and floodplains following precipitation
- Urbanization has altered the hydrology & increased pollutants loads from runoff
- Multiple isolated pools exists within the dry channel that hold water for various periods of time in Central Texas
- Algae are the primary producers in isolated pools within ephemeral streams
 - No known studies have evaluated the hydrology & water quality of these isolated pools

Upper Section of Leon Creek

Isolated & contracting ephemeral pool

Flow recedes within 24-48 hours and pools become isolated within 3-5 days

Objectives

- •Estimate predictors of hydroperiod in isolated pools based on rainfall & other variables
- Evaluate water quality in isolated pools weekly over two years based on chlorphyll concentrations
- •Determine predictors of algae biomass based on chlorophyll a and phycocyanin concentrations

Methods

- Study occurred along a 1.5 km segment in the upper section of Leon Creek
- Isolated pools (n = 12) were sampled weekly (n = 107) after flow ceased from June 2021 to June 2023
- Eighteen (18) variables were analyzed in each pool (if water was present)
- Data was analyzed with an Anova or Kruskal-Wallis test, multiple regression, and Non-metric Multidimensional Scaling (NMDA)

Variables Evaluated

- Season (S-F-W-Sp)
- Pools (1-12)
- Chlorophyll a (μ g / L)
- Phycocyanin (μ g / L)
- Water temperature (°C)
- pH
- Conductivity (μ s / cm)
- Turbidity (NTU)
- Dissolved oxygen (mg / L)

- Canopy cover (%)
- Organic carbon (mg / L)
- Total nitrogen (mg / L)
- Sediment organic matter (%)
- Precipitation (cm; daily)
- Pool area (m²)
- Mean depth (m)
- Hydrology (% time with water)

Results

Precipitation Patterns During Study

Pool Hydrology over the study period & area (Ln)

Seasonal Hydrology

With 3.2 cm of precipitation over 28 days, 8 of the pools contain some volume of water

Pool Hydroperiod (% time with water)

Variable	Coeff.	Std Coeff.	Std Error	P-value
Constant	11.61		2.05	
ORP	-2.22	-0.55	0.45	<0.001
Max Depth	0.55	0.39	0.14	<0.001
Season	0.29	0.54	0.08	0.001
Temp (C)	1.13	0.49	0.35	0.002
OM%	-0.33	-0.33	0.12	0.009
Pool	-0.05	-0.26	0.02	0.047

 $F(6, 41) = 13.3, P < 0.001; R^2 = 0.66$

Seasonal Differences Among Pools

Variable	Coeff.	Std Coeff.	Std Error	P-value
Constant	-0.34		4.53	
ORP	3.08	0.40	0.72	< 0.001
Temperature (°C)	-3.07	-0.70	0.32	< 0.001
DO	-1.73	-0.27	0.50	0.001
Hydroperiod	0.43	0.22	0.16	0.012
Canopy Cover	-0.25	-0.20	0.10	0.015
Organic carbon (mg/L)	-0.43	-0.17	0.21	0.044

 $F(6, 41) = 27.4, P < 0.001; R^2 = 0.80$

Chlorophyll a Concentrations (μ g L⁻¹)

Variable	Coeff.	Std Coeff.	Std Error	P-value
Constant	-12.82		2.50	
рН	6.32	0.67	1.07	< 0.001
Precipitation (cm; daily)	0.69	0.51	0.17	< 0.001
Organic carbon (mg/L)	0.58	0.50	0.15	< 0.001
Total nitrogen (mg/L)	0.22	0.29	0.09	0.02
Turbidity (NTU)	-0.11	-0.26	0.05	0.03

 $F(5, 42) = 12.6, P < 0.001; R^2 = 0.60$

Chlorophyll a Concentrations by Season & Pool

Season: F = 16.2 df = 3 P < 0.001

Spring ^a Summer ^a Fall ^b Winter ^b

Phycocyanin Concentrations (μ g L⁻¹)

Variable	Coeff.	Std Coeff.	Std Error	P-value
Constant	-49.2		7.91	
рН	19.9	0.72	3.40	< 0.001
Organic carbon (mg/L)	2.07	0.61	0.40	< 0.001
Precipitation (cm; daily)	1.39	0.35	0.46	0.004

 $F(3, 44) = 14.62, P < 0.001; R^2 = 0.50$

NMS Model

Final Stress = 9.83

	r-value	
Variable	Axis 1	Axis 2
рН	-0.046	-0.673
EC	-0.013	0.600
DO	0.188	-0.462
Phycoc	-0.325	-0.431
CanCov	0.358	0.301
TN	-0.176	0.346
OM (%)	-0.533	0.445
Area	-0.658	-0.812
Depth	-0.445	-0.637
Hydro.	-0.436	-0.693

Total Nitrogen (mg/L) by Season & Pool

Turbidity (NTU) by Season & Pool

Conclusions

- Pool hydrology was consistent seasonally while precipitation was variable
- With 3.2 cm of precipitation over 28 days, eight pools contained water
- Temperature and ORP were the strongest indicators of differences among pools but exhibited opposite trends over the total study and seasonally
- Chlorophyll a was highly associated with pH and to some degree precipitation
 - Greater concentrations in Spring & Fall

Conclusions (cont.)

- Based on the NMS model, pools were distinctly different
 - Smaller size pools were associated with > sediment OM, EC, TN, & OC, and < ORP
 - Intermediate size pools were associated with > DO, pH, Chl a, and < canopy cover
 - Larger pools were associated with greater mean depth & longer hydroperiods
- Pulses in TN may be attributable to precipitation and rewetting of pools & increased heterotrophic activity
- Turbidity was highly variable but likely due to animal use of pools

Questions

