From the top: surface-derived carbon fuels greenhouse gas production at depth in a peatland

Alexandra Hedgpeth^{1,2}, Alison M. Hoyt³, Kyle C. Cavanaugh¹, Karis J. McFarlane^{2,★}, and Daniela F. Cusack^{1,4,5,★}

¹Geography Department, University of California Los Angeles, Los Angeles, CA 94143, USA
 ²Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
 ³Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
 ⁴Department of Ecosystem Science & Sustainability, Colorado State University, Fort Collins, CO 80523, USA
 ⁵Smithsonian Tropical Research Institute, 0843-03092, Ancon, Panama, Republic of Panama
 * These authors contributed equally to this work.

la F. Cusack. "From n a Neotropical

n in a

What is Peat?

- Highly organic soil that has accumulated over thousands of years
- Environmental conditions cause an imbalance between inputs and decomposition
- The largest natural source of methane
- 40-60% Carbon
- Global Peatlands = 1/3 of total carbon in soils

Peatlands are important because they store and release carbon

Goldstine et al., 2020

Tropical peatlands contain the highest amount of irrecoverable C, and take the longest time to recover after C loss

What's an isotope and why are they useful?

Carbon-13 Common *Stable* Carbon-14 Rare Unstable

San San Pond Sak, Bocas Del Toro, Panama

How is carbon cycling within these soils? Hypothesis 1: **Respired CO₂ and CH₄ is sourced from younger material** Is this bubble coming from microbial use of old peat or younger C? Young Material epth

Older Material

How is carbon cycling within these soils?

Hypothesis 2:

Hydrogenotrophic methanogenesis, not acetoclastic methanogenesis, is the dominant pathway of CH₄ production across the whole soil profile

Acetoclastic Methanogenesis

Peat chemistry can help explain source selection and methane production pathway Nuclear Magnetic Resonance Analysis - NMR

Sampling Design

Hypothesis 1:

¹⁴C Bulk peat soil ¹⁴C Dissolved Organic Carbon

¹⁴C Respiration products

NMR

Hypothesis 2:

¹³C Bulk peat soil ¹³C Respiration products

Hypothesis 1

Radiocarbon ($\triangle 14C$)Less depleted (less negative) = younger/more modernMore depleted (more negative) = older/less modern

Hypothesis 1

 ∇

7

Site 1

Ð

ŧ٦

11

 \bigcirc

100-04

Site 3

OC is modern

Gas values overlap DOC

Site 3

Preservation of bulk peat

Preferential use of

Preferential use of surface DOC despite <u>bulk</u> <u>peat being relatively</u> <u>bioavailable</u>

Bulk Peat is old

Site 2

 ∇

 ∇

 ∇

/

40

Bulk Peat is <u>old</u> DOC is <u>modern</u> <u>Gas values overlap DOC</u>

Preservation of bulk peat

Preferential use of surface DOC despite <u>bulk</u> <u>peat being relatively</u> <u>bioavailable</u>

Dominant pathway throughout the peat profile is <u>hydrogenotrophic</u> <u>methanogenesis</u>

How is carbon currently cycling within these soils?

Young carbon seems to be the dominant source of gas fluxes from deep peat

Chemically, bulk peat has the potential to decompose if exposed to aerobic conditions

Dominant pathway throughout the peat profile seems to be hydrogenotrophic methanogenesis

Thank You hedgpea@stanford.edu

Smithsonian Tropical Research Institute