Enhancing the design of constructed wetlands along the Missouri River to improve nutrient removal

Mohamed S. Gaballa Roderick W. Lammers, LauNaslund Matthew Chambers, David Crane, and Brian P. Bledsoe

The 1th International Symposium on Biogeochemistry of Wetlands & Aquatic systems 2025

NETWORK FOR ENGINEERING WITH NATURE

CENTRAL MICHIGAN UNIVERSITY

Photo: © Dave Crane

Free water surface constructed wetlands (FWS)

- Soil collected from borrow pits for levee repair or setbacks
- Borrow pits can be converted to wetlands to provide ecological value

What are the water quality benefits of these constructed wetlands?

Work targets

- Evaluating Newly Established Constructed Wetlands along the Missouri River
- Enhancing the design of constructed wetlands to improve nutrient removal

The challenges are:

Surface runoff, groundwater (in/out), other water balance fluxes? The wetland had no observed outflow during the monitoring period?

Area: 15.6 km² (1,559 ha)

Land use in the watershed is dominated by:

- row-crop agriculture (83.3%),
- hay/pasture (6.3%) and
- forested land (7.4%).

The wetland-to-watershed ratio is 1.3% (US range 2.5%)

Research Overview

Wetland monitoring (2023 - 2024) and

Watershed and wetland modeling (2013-2024)

Wetland Monitoring

Wetland Modeling TN

Total inflow: 31.6 (kg. ha ⁻¹. year⁻¹) Mean **36.4%** TN Removal

Wetland Modeling TP

Total in flow: 5.7 (kg. ha⁻¹. year⁻¹)

Mean 62.6% TP Removal

Wetland Modeling Increased Loading

36.4 to 50%

63.0 to 65.2%

Wetland Modeling Adding outflow pipe

Nitrogen

Phosphorus

36.4 to 29.4%

63.0 to 53.3%

Conclusions

- Effective removal of both N (avg. 36.6% removal) and P (avg. 63.0% removal)
- Wetland receives relatively low nutrient loads for its size
 - TN: 31.4 kg/ha/yr (lit. range 21.2-25,000 kg/ha/yr)¹
 - TP: 5.7 kg/ha/yr (lit. range 0.3-3,700 kg/ha/yr)¹
- Future designs need to account for MO River influence and estimates of watershed loading rates to effectively size wetlands

¹Land et al. (2016)

Acknowledgements

Special thanks to Sarah Copertino and Dave Crane for completing the field sampling.

This work was supported by the U.S. Army Corps of Engineers Engineering With Nature® Initiative through Cooperative Ecosystem Studies Unit Agreement W9 12HZ- 20- 2- 0031.

