REACTIVE MATERIALS FOR ENHANCED REMOVAL OF ORGANIC MICROPOLLUTANTS IN CONSTRUCTED WETLANDS

Adam Sochacki¹, **Natalia Donoso**¹, Sylvie Kříženecká², and Jan Vymazal¹

¹Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Czech Republic

²J.E. Purkyně University in Ústí nad Labem, Faculty of the Environment, Ústí nad Labem, Czech Republic

CAN CONSTRUCTED WETLANDS PROVIDE A SUSTAINABLE SOLUTION WHERE CONVENTIONAL METHODS FALL SHORT?

As regulations tighten and awareness grows, research increasingly highlights the need for tertiary treatments, like **constructed wetlands**, to effectively remove **micropollutants**.

CONSTRUCTED WETLANDS

- Suspended solids, bulk organics (BOD₅, COD), and nutrients.
- Compounds of emerging concern (CECs) or potentially harmful viral pathogens.

 $\stackrel{\diamond \leftarrow \circ}{\stackrel{\lor}{\rightarrow}}$ Implementation and rapid removal costs, scalability, environmental regulations, weather conditions, physicochemical, and biochemical properties.

COMPOUNDS OF EMERGING CONCERN

- The EU Water Framework Directive (Directive 2000/60/EC)
 - The EU Watch List concerning CECs identify and monitor potential pollutants in surface water, including CECs.
- Revised Urban Wastewater Treatment Directive
 - Pharmaceuticals, industrial compounds, pesticides, food additives and sweeteners, personal care and hygiene products, stimulants.
- Persistency, mobility, and toxicity.
- Scarce or insufficient quality monitoring data.

IRON HYDROXIDE AND MANGANESE OXIDES

- Fe hydroxides and Mn oxides can retain organic chemicals
 - Large specific surface area, high redox properties, and ability to participate in various chemical and biological reactions
- Limitations
 - The complexity of CECs/selectivity, the reactivity of MnOx and FeOx with CECs, has been poorly studied, including loss of sorption capacity in anaerobic conditions, toxicity, and long-term performance.

OBJECTIVES

- Evaluate the impact of Fe hydroxide and Mn oxide on the removal of organic micropollutants by vertical flow CWs treating **household wastewater.**
- Test different working conditions
 - Aerobic (unsaturated) and **anaerobic/anoxic (saturated)** conditions
 - Presence and absence of plants
 - Increased number of micropollutants

EXPERIMENTAL SETUP - SAMPLING

MnOx - unP - Sat/unSat

FeOx - unP - Sat/unSat

Sand - unP - Sat/unSat

Materials and methods

3 different substrates, aerobic/anaerobic-anoxic conditions, presence and absence of plants

12 different treatments

Working conditions Type of flow Down flow vertical Influent flow 0.4 L/doseHydraulic loading $0.013 \text{ m}^3/\text{m}^2$ Influent Synthetic household wastewater Duration July – December 2024 70% sand, 30% FeOx (GEH) / 30% Substrate Material MnOx (G-1) with sand 1:1 Macrophyte Yellow Iris (Iris pseudacorus) Sampling frequency 7 - 8 days (once a weekly)

Parameters

pH, EC, N-NH₄, F, Cl, N-NO₂, Br, N-

NO₃, PO₄, SO₄, TC, TOC, IC, TN,

metals (23), micropollutants (31)

OVERALL REMOVAL EFFICIENCIES

Types of wetlands	FeOx- unP- Sat	FeOx- unP- unSat	FeOx- P- Sat	FeOx- P- unSat	Sand- unP- Sat	Sand- unP- unSat	Sand- P- Sat	Sand- P- unSat	MnOx- unP- Sat	MnOx- unP- unSat	MnOx- P- Sat	MnOx- P- unSat
Carbamazepine	≤ 0 %	≤ 0 %	6.2%	$\leq 0\%$	≤ 0 %	≤ 0 %	≤ 0 %	≤0%	≤ 0 %	≤ 0 %	≤ 0 %	≤ 0 %
Fluconazole	≤ 0 %	≤0%	≤ 0 %	$\leq 0\%$	≤ 0 %	≤0%	≤0%	$\leq 0\%$	≤ 0 %	≤0%	≤0%	$\leq 0\%$
Lamotrigine	≤ 0 %	1.8%	10.8%	$\leq 0\%$	≤ 0 %	≤0%	≤0%	$\leq 0\%$	≤ 0 %	≤0%	≤0%	$\leq 0\%$

Types of wetlands

Carbamazepine
r r

Fluconazole

Lamotrigine

N-

HC

Types of wetlands	FeOx- unP- Sat	FeOx- unP- unSat	FeOx- P- Sat	FeOx- P- unSat	Sand- unP- Sat	Sand- unP- unSat	Sand- P- Sat	Sand- P- unSat	MnOx- unP- Sat	MnOx- unP- unSat	MnOx- P- Sat	MnOx- P- unSat
Benzotriazol	48.4%	71.9 %	86.3%	82.0%	2.2%	63.4%	51.7%	78.0%	17.7%	56.0%	43.2%	68. 1%
*Diclofenac	30%	52%	13%	30%	-3%	19%	2%	15%	99 %	84%	95%	94%
Fipronil	94.8%	94.0 %	92.5 %	80.5%	77.1%	45.5%	81.4%	56.8%	62. 1%	45.2%	59.4 %	51.9 %
Furosemide	41%	34%	19%	39%	29%	24%	5%	39%	65%	46%	36%	75%
Gemfibrozil	$\leq 0\%$	78.0%	41.8%	91.2%	$\leq 0\%$	39.8%	13.7%	94.2%	$\leq 0\%$	79.0 %	9.5%	94.2%
Hydrochlorothiazide	24.7%	10.8%	27.7%	-13.5%	23.6%	$\leq 0\%$	$\leq 0\%$	$\leq 0\%$	46.3%	13.8%	18.9%	28.9%
Ibuprofen	$\leq 0\%$	95.0%	42.4%	95.0%	-22.3%	95.0%	37.5%	95.0%	-19.3%	95.0%	32.7%	95.0%
Ketoprofen	46.5%	98.7 %	17.3%	99.4 %	43.4%	69.2%	10.3%	99.4 %	38.3%	92.6 %	0.1%	98. 5%
Metoprolol	53.7%	68.6%	85.6%	67.5%	40.7%	43.8%	88.1 %	80.0%	50.7%	46. 1%	50.6%	63.9 %
*Sulfamethoxazole	91.4%	37.9%	99.7 %	40.8%	39.3%	86.2%	84.4%	49.6%	33.1%	60.7%	32.5%	54.8%

Types of wetlands	FeOx- unP- Sat	FeOx- unP- unSat	FeOx- P- Sat	FeOx- P- unSat	Sand- unP- Sat	Sand- unP- unSat	Sand- P- Sat	Sand- P- unSat	MnOx- unP- Sat	MnOx- unP- unSat	MnOx- P- Sat	MnOx- P- unSat
5-methylbenzotriazole	58.1%	97.0%	90.0%	98.9%	$\leq 0\%$	95.6%	61.0%	98.9%	10.1%	96.7%	62.9%	98.9%
Acetaminophen	64.6%	99.0 %	83.7%	99.0%	41.2%	99.0%	78.3%	99.0 %	99.0%	99.0 %	99.0%	99.0%
Bisphenol S	96.7%	96.7%	71.9%	99.2%	99.2%	93.7%	99.2%	99.2%	99.2%	91.9%	98.2%	99.2%
Caffeine	69.5%	98.0%	93.6%	98.0 %	59.8%	98.0%	89.4%	98.0%	82.3%	98.0%	95.2%	98.0%
Chloramphenicol	95.1%	95.1%	95.1%	95.1%	95.1%	95.1%	95.1%	95.1%	95.1%	95. 1%	95.1%	95.1%
Climbazole	95.6%	95.6%	95.6%	95.6%	26.4%	95.6%	95.6%	95.6%	95.6%	95.6%	95.6%	95.6%
DEET	12.6%	94.6%	28.5%	98.7%	0.3%	95.5%	24.6%	98.7%	3.9%	94.4%	81.1%	98.7%
Metformin	89.4%	95.9%	82.7%	95.9%	52.4%	88.4%	65.5%	93.2%	48.7%	95.9%	63.2%	95.9%
Methylparaben	98.5%	98.5%	98.5%	98.5%	98.5%	98.5%	98.5%	98.5%	98.5%	98.5%	98.5%	98.5%
o-desmethylvenlafaxine	80.5%	73.5%	72.2%	77.5%	39.2%	69.2%	74.8%	79.9%	97.8%	97.8%	97.8%	97.8%
Oxybenzone	87.7%	87.7%	87.7%	87.7%	87.7%	87.7%	87.7%	87.7%	87.7%	87.7%	87.7%	87.7%
Saccharin	73.7%	96.6%	$\leq 0\%$	96.6%	24.1%	96.6%	-29.6%	96.6%	50.5%	96.6 %	44.1%	96.6 %
Triclosan	96.3%	96.3%	96.3%	96.3%	91.5%	96.3%	96.3%	96.3%	96.3%	96.3%	96.3%	96.3%

Results and Discussion

Results and Discussion

NUTRIENTS REMOVAL

METAL LEACHING

CONCLUSIONS

Enhancing wastewater treatment plants aims to minimize the release of micropollutants; for that, amendments to constructed wetlands were tested by exposing them to different working conditions.

More effective removal of most selected compounds, ranging from **87% to 95%**, under **unsaturated planted** conditions. Prominent examples of compounds reacting under saturated and unsaturated conditions with **iron hydroxides** are **sulfamethoxazole** and **fipronil**.

FeOx – unP – unSat

The removal of pollutants can be enhanced by adsorption and other processes (reaction with Fe⁺²)**Oxidation by manganese oxides**, can be observed by some compounds such as **diclofenac**.

FURTHER RESEARCH

ACKNOWLEDGMENT

Project

 Reactive Interfaces for Degrading Contaminants of Emerging Concern and Pathogenic Viruses in Constructed Wetlands" from NSF and Czech Science Foundation (project No. 24-14297L)

QUESTIONS?

THANK YOU!

Ph.D. Natalia Donoso, MSc.

Postdoctoral Researcher | Department of Applied Ecology Faculty of Environmental Sciences email: <u>donoso_pantoja@fzp.czu.cz</u>

Czech University of Life Sciences in Prague <u>www.czu.cz</u>