N₂O Production and Emission in Wetlands Receiving Elevated, Agricultural Nitrate Loads

W. Crumpton, G. Stenback, D. Green, and J. Norton. Iowa State University

Professor William G. Crumpton Department of Ecology, Evolution, and Organismal Biology Iowa State University, Ames, Iowa USA

Upper Mississippi Basin is characterized by:

Upper Mississippi Basin is characterized by:

extensive cultivated cropland

Upper Mississippi Basin is characterized by:

- extensive cultivated cropland
- extensive agricultural drainage

W.G. Crumpton, Iowa State University

These drainage networks are the primary pathway for nitrate transport to surface waters in lowa,

...but also provide unique opportunities for targeting wetland restorations to intercept and reduce NPS nitrogen loads.

Water Quality Wetland Restoration in Palo Alto County Iowa

Water Quality Wetland Restorations in Iowa

One hundred and forty-six water quality restorations through the Iowa Conservation Reserve Enhancement Program and the Iowa Water Quality Initiative (Iowa Department of Agriculture and Land Stewardship)

Wetland Performance Monitoring

Twenty-six wetlands monitored for nitrate and TN, representing a total of 69 site-years of data

(Crumpton et. al 2020, Journal of Environmental Quality https://doi.org/10.1002/jeq2.20061)

Wetlands were chosen to ensure a broad range in factors expected to affect N loss rates, including hydraulic loading rate, N concentration, and N loading rate.

Wetland Performance Monitoring

Seventeen wetlands monitored for dissolved N₂O and CH₄ loads, representing a total of 39 site-years of data

All sites were instrumented for flow measurement and automated sampling

Using Wetlands to Reduce NPS Nitrogen Loads

- N transformation and transport in agricultural landscapes
- N transformation in wetlands receiving elevated NPS loads
- N removal and GHG emissions in wetlands receiving NPS loads
 - Patterns in flow and N load
 - NO₃-N mass balance
 - N₂O-N mass balance
- Extending N₂O mass balances based on N₂O-N production : NO₃-N reduction ratios

N transformation and transport in tile-drained cropland

Using Wetlands to Reduce NPS Nitrogen Loads

- N transformation and transport in agricultural landscapes
- N transformation in wetlands receiving elevated NPS loads
- N removal and GHG emissions in wetlands receiving NPS loads
 - Patterns in flow and N load
 - NO₃-N mass balance
 - N₂O-N mass balance
- Extending N₂O mass balances based on N₂O-N production : NO₃-N reduction ratios

Using Wetlands to Reduce NPS Nitrogen Loads

- N transformation and transport in agricultural landscapes
- N transformation in wetlands receiving elevated NPS loads
- N removal and GHG emissions in wetlands receiving NPS loads
 - Patterns in flow and N load
 - NO₃-N mass balance
 - N₂O-N mass balance
- Extending N₂O mass balances based on N₂O-N production : NO₃-N reduction ratios

Seasonal Patterns in Water Temperature, discharge and N load.

Seasonal Patterns in Flow and Nitrate Concentrations

W.G. Crumpton, Iowa State University

Seasonal Patterns in Flow and Nitrate Concentrations

W.G. Crumpton, Iowa State University

Seasonal Patterns in Flow and Nitrate Concentrations

Seasonal Patterns in Flow, Nitrate, and Dissolved N₂O Concentrations at Wetland Inflows

Using Wetlands to Reduce NPS Nitrogen Loads

- N transformation and transport in agricultural landscapes
- N transformation in wetlands receiving elevated NPS loads
- N removal and GHG emissions in wetlands receiving NPS loads
 - Patterns in flow and N load
 - NO₃-N mass balance
 - N₂O-N mass balance
- Extending N₂O mass balances based on N₂O-N production : NO₃-N reduction ratios

Directly estimated fluxes

TN and NO₃-N Mass Balances

Effect of Hydraulic Loading Rate and Temperature on Nitrate Removal Efficiency

Twenty-six wetlands monitored for nitrate and TN, representing a total of 69 site-years of data

(Crumpton et. al 2020, Journal of Environmental Quality https://doi.org/10.1002/jeq2.20061)

R²=0.93

Using Wetlands to Reduce NPS Nitrogen Loads

- N transformation and transport in agricultural landscapes
- N transformation in wetlands receiving elevated NPS loads
- N removal and GHG emissions in wetlands receiving NPS loads
 - Patterns in flow and N load
 - NO₃-N mass balance
 - N₂O-N mass balance
- Extending N₂O mass balances based on N₂O-N production : NO₃-N reduction ratios

Directly estimated fluxes

Directly estimated fluxes Calculated from mass balance analyses

Directly estimated fluxes Calculated from mass balance analyses

N₂O-N Production and Emission Increased with Increases in Nitrate Loading and Loss Rates

However, conversion efficiency was very high, with an average N_2O-N production : NO_3-N reduction ratio of 0.5%. Similar results were found using enclosure studies.

Five wetlands monitored for NO₃ and N₂O fluxes, representing a total of 9 site-years of data. H. Hoglund et al., In Review

W.G. Crumpton, Iowa State University

N₂O-N Production and Emission Increased with Increases in Nitrate Loading and Loss Rates

However, conversion efficiency was very high, with an average N_2O-N production : NO_3-N reduction ratio of 0.5%. Similar results were found using enclosure studies.

Five wetlands monitored for NO₃ and N₂O fluxes, representing a total of 9 site-years of data. H. Hoglund et al., In Review

W.G. Crumpton, Iowa State University

Using Wetlands to Reduce NPS Nitrogen Loads

- N transformation and transport in agricultural landscapes
- N transformation in wetlands receiving elevated NPS loads
- N removal and GHG emissions in wetlands receiving NPS loads
 - Patterns in flow and N load
 - NO₃-N mass balance
 - N₂O-N mass balance

Extending N₂O mass balances based on N₂O-N production : NO₃-N reduction ratios

Extending N₂O Mass Balances Using N₂O-N Production:NO₃-N Reduction Ratio

Nitrate reduction calculated from nitrate mass balance.

Nitrate reduction calculated from nitrate mass balance.

 \longrightarrow N₂O-N emission calculated from N₂O-N mass balance.

Extending N₂O Mass Balances Using N₂O-N Production:NO₃-N Reduction Ratio

Nitrate reduction calculated from nitrate mass balance.

 \rightarrow N₂O-N production calculated as 0.5% nitrate-N reduction.

 \rightarrow N₂O-N emission calculated from N₂O-N mass balance.

Dissolved N₂O exported from the wetlands was about one third less than the dissolved N₂O load entering the wetlands.

N₂O production within the wetlands nearly always exceeded dissolved N₂O export from the wetlands.

 N_2O emission frequently exceeded N_2O production within the wetlands, suggesting the importance of dissolved N_2O load as a source of emissions.

Both N₂O Production Within the Wetlands and Dissolved N₂O Load to the Wetlands Increased with Increasing Nitrate Load, but as Different Functions

>N₂O-N production = 0.5% of Mass NO₃-N reduction

Both N₂O Production Within the Wetlands and Dissolved N₂O Load to the Wetlands Increased with Increasing Nitrate Load, but as Different Functions

>N₂O-N production = 0.5% of Mass NO₃-N reduction >Dissolved N₂O-N load = 0.078% of NO₃-N Load

As a result, the Relative Contribution of Dissolved N₂O Load to Total N₂O Inputs Increases with Increasing Nitrate Load

>Total N₂O-N inputs = sum (N₂O-N production and dissolved N₂O-N load)
>Dissolved N₂O-N load measured directly
>N₂O-N production = 0.5% of Mass NO₃-N reduction

- Wetlands can be effective sinks for NPS nitrate loads across a broad range of conditions
- N₂O production increases with increasing nitrate load, but conversion efficiency is very high
- N₂O emission can significantly exceed N₂O production in wetlands, suggesting the importance of dissolved N₂O loads as a source of emissions
- Dissolved N₂O loads and exports increase with nitrate load and can be a significant fraction of total N₂O inputs and outputs

- Wetlands can be effective sinks for NPS nitrate loads across a broad range of conditions
- N₂O production increases with increasing nitrate load, but conversion efficiency is very high
- N₂O emission can significantly exceed N₂O production in wetlands, suggesting the importance of dissolved N₂O loads as a source of emissions
- Dissolved N₂O loads and exports increase with nitrate load and can be a significant fraction of total N₂O inputs and outputs

- Wetlands can be effective sinks for NPS nitrate loads across a broad range of conditions
- N₂O production increases with increasing nitrate load, but conversion efficiency is very high
- N₂O emission can significantly exceed N₂O production in wetlands, suggesting the importance of dissolved N₂O loads as a source of emissions
- Dissolved N₂O loads and exports increase with nitrate load and can be a significant fraction of total N₂O inputs and outputs

- Wetlands can be effective sinks for NPS nitrate loads across a broad range of conditions
- N₂O production increases with increasing nitrate load, but conversion efficiency is very high
- N₂O emission can significantly exceed N₂O production in wetlands, suggesting the importance of dissolved N₂O loads as a source of emissions
- Dissolved N₂O loads and exports increase with nitrate load and can be a significant fraction of total N₂O inputs and outputs

- Wetlands can be effective sinks for NPS nitrate loads across a broad range of conditions
- N₂O production increases with increasing nitrate load, but conversion efficiency is very high
- N₂O emission can significantly exceed N₂O production in wetlands, suggesting the importance of dissolved N₂O loads as a source of emissions
- Dissolved N₂O loads and exports increase with nitrate load and can be a significant fraction of total N₂O inputs and outputs

ISU Weilands Research Lab: Integrating Science with Practice

S. Fisher, C. Tensesaca, D. Eads, J. Carr, H. Hoglund, J. Eeling, J. Norton

Iowa Department of Agriculture and Land Stewardship Iowa Department of Natural Resources US Department of Agriculture US Environmental Protection Agency

N₂O production within the wetlands nearly always exceeded dissolved N₂O export from the wetlands.

Nitrate Removal Efficiency and Nitrate Mass Loss as Function of Nitrate Load Only

R²=0.68

Nitrate Removal Efficiency and Nitrate Mass Loss as Function of Nitrate Load Only

