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Upper Mississippi Basin is 
characterized by: 

• extensive cultivated cropland

• extensive agricultural drainage

• elevated nitrate concentrations in surface waters
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Prior to European settlement, much of Iowa’s landscape 
was characterized by extensive wetland systems
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…but this landscape is now characterized by extensive 
subsurface tile drainage, with very few wetlands remaining.
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These drainage networks are the primary pathway for 
nitrate transport to surface waters in Iowa, 
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…but also provide unique opportunities for targeting wetland restorations
          to intercept and reduce NPS nitrogen loads.



Water Quality Wetland Restoration in Palo Alto County Iowa

Photo credit: Lynn Betts



Water Quality Wetland Restorations in Iowa
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One hundred and forty-six water quality restorations through the Iowa Conservation Reserve Enhancement Program 
and the Iowa Water Quality Initiative (Iowa Department of Agriculture and Land Stewardship)



Wetland Performance Monitoring

(Crumpton et. al 2020, Journal of Environmental Quality https://doi.org/10.1002/jeq2.20061)
Twenty-six wetlands monitored for nitrate and TN, representing a total of 69 site-years of data

Wetlands were chosen to ensure a broad range in factors expected to affect N loss rates, 
including hydraulic loading rate, N concentration, and N loading rate.
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https://doi.org/10.1002/jeq2.20061


Wetland Performance Monitoring
Seventeen wetlands monitored for dissolved N2O and CH4 loads, representing a total of 39 site-years of data
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All sites were instrumented for flow measurement and automated sampling

Water, N and P fluxes were measured at all sites.

GHG and MeHg fluxes were measured at selected sites 



 N transformation and transport in 
agricultural landscapes

 N transformation in wetlands receiving 
elevated NPS loads

 N removal and GHG emissions in wetlands 
receiving NPS loads
– Patterns in flow and N load
– NO3-N mass balance
– N2O-N mass balance

 Extending N2O mass balances based on 
N2O-N production : NO3-N reduction ratios
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Using Wetlands to Reduce NPS Nitrogen Loads
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N transformation and transport in tile-drained cropland
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Organic N

Soil bound NH4
+

NH4
+

N transformation in wetlands

W.G. Crumpton, Iowa State University



NO3
-

Organic N

Soil bound NH4
+

NH4
+

N transformation in wetlands

W.G. Crumpton, Iowa State University



NO3
-

Organic N

Soil bound NH4
+

NH4
+

N2

N transformation in wetlands

W.G. Crumpton, Iowa State University



NO3
-

External NO3
- Loading

Organic N

Soil bound NH4
+

NH4
+

Fate of NPS nitrate loads in wetlands

W.G. Crumpton, Iowa State University



NO3
-

External NO3
- Loading

DenitrificationOrganic N

Soil bound NH4
+

NH4
+

N2

Fate of NPS nitrate loads in wetlands

W.G. Crumpton, Iowa State University



NO3
-

External NO3
- Loading

DenitrificationOrganic N

Soil bound NH4
+

NH4
+

N2

Fate of NPS nitrate loads in wetlands

W.G. Crumpton, Iowa State University

N2O



 N transformation and transport in 
agricultural landscapes

 N transformation in wetlands receiving 
elevated NPS loads

 N removal and GHG emissions in wetlands 
receiving NPS loads
– Patterns in flow and N load
– NO3-N mass balance
– N2O-N mass balance

 Extending N2O mass balances based on 
N2O-N production : NO3-N reduction ratios
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Using Wetlands to Reduce NPS Nitrogen Loads



Seasonal Patterns in Water Temperature, discharge and N load. 

W.G. Crumpton, Iowa State University
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Seasonal Patterns in Flow and Nitrate Concentrations
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 N transformation and transport in 
agricultural landscapes

 N transformation in wetlands receiving 
elevated NPS loads

 N removal and GHG emissions in wetlands 
receiving NPS loads
– Patterns in flow and N load
– NO3-N mass balance
– N2O-N mass balance

 Extending N2O mass balances based on 
N2O-N production : NO3-N reduction ratios
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Using Wetlands to Reduce NPS Nitrogen Loads
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Effect of Hydraulic Loading Rate and Temperature on Nitrate Removal Efficiency
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(Crumpton et. al 2020, Journal of Environmental Quality https://doi.org/10.1002/jeq2.20061)
Twenty-six wetlands monitored for nitrate and TN, representing a total of 69 site-years of data

R2=0.93

https://doi.org/10.1002/jeq2.20061
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Seventeen wetlands monitored for NO3 and dissolved N2O loads, representing a total of 39 site-years of data

Using the FWA average Nitrate Concentration of 15 mg N/L 
and ignoring temperature 



 N transformation and transport in 
agricultural landscapes

 N transformation in wetlands receiving 
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Using Wetlands to Reduce NPS Nitrogen Loads
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N2O-N Production and Emission Increased with Increases in Nitrate Loading and Loss Rates

W.G. Crumpton, Iowa State University

However, conversion efficiency was very high, with an average N2O-N production : NO3-N reduction ratio of 0.5%.
Similar results were found using enclosure studies.

R2=0.64

Five wetlands monitored for NO3 and N2O fluxes, representing a total of 9 site-years of data. H. Hoglund et al., In Review



N2O-N Production and Emission Increased with Increases in Nitrate Loading and Loss Rates
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R2=0.64

Five wetlands monitored for NO3 and N2O fluxes, representing a total of 9 site-years of data. H. Hoglund et al., In Review

However, conversion efficiency was very high, with an average N2O-N production : NO3-N reduction ratio of 0.5%.
Similar results were found using enclosure studies.
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Using Wetlands to Reduce NPS Nitrogen Loads
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Seventeen wetlands monitored for NO3 and dissolved N2O loads, representing a total of 39 site-years of data
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Seventeen wetlands monitored for NO3 and dissolved N2O loads, representing a total of 39 site-years of data
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Dissolved N2O Export vs Dissolved N2O Load to the Wetlands

Dissolved N2O exported from the wetlands was about one third less than the dissolved N2O load entering the wetlands.
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N2O Emission and Dissolved Export vs N2O Production Within the Wetlands

N2O production within the wetlands nearly always exceeded dissolved N2O export from the wetlands.
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N2O Emission vs N2O Production Within the Wetlands

N2O emission frequently exceeded N2O production within the wetlands, 
suggesting the importance of dissolved N2O load as a source of emissions.
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As a result, the Relative Contribution of Dissolved N2O Load to Total N2O Inputs Increases 
with Increasing Nitrate Load

W.G. Crumpton, Iowa State University

>Total N2O-N inputs = sum (N2O-N production and dissolved N2O-N load)
>Dissolved N2O-N load measured directly
>N2O-N production = 0.5% of Mass NO3-N reduction



 Wetlands can be effective sinks for NPS nitrate 
loads across a broad range of conditions

 N2O production increases with increasing nitrate 
load, but conversion efficiency is very high

 N2O emission can significantly exceed N2O 
production in wetlands, suggesting the importance 
of dissolved N2O loads as a source of emissions

 Dissolved N2O loads and exports increase with 
nitrate load and can be a significant fraction of total 
N2O inputs and outputs
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 Dissolved N2O loads and exports increase with 
nitrate load and can be a significant fraction of total 
N2O inputs and outputs

W.G. Crumpton, Iowa State University
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N2O Emission and Dissolved Export vs N2O Production Within the Wetlands

N2O production within the wetlands nearly always exceeded dissolved N2O export from the wetlands.
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Nitrate Removal Efficiency and Nitrate Mass Loss as Function of Nitrate Load Only
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