

Uncertainty of hydrological processes on greenhouse gas emissions from urban rivers

Shu Chen

Shanghai Jiao Tong University, Shanghai, CHINA

June 5, 2025 Baton Rouge, LA, USA

Acknowledgement

National Natural Science Foundation of China (No. 42077338 and No. 42177350), Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration (SHUES2021C03), and the Fundamental Research Funds for the Central Universities (40500-20104-222357)

1 Background

Under the background of global climate change, the complex and changeable hydrological conditions of rivers may affect the key carbon and nitrogen cycle processes and deepen the uncertainty of GHG estimations

2 Characteristics of Study Area

- Shanghai is situated on the east tip of the Yangtze coastal plain and is a typical megacity with a distinct division between urban and rural areas.
- ➤ The river network is extremely dense. Most rivers are influenced by diurnal tidal cycle and feature a hydrological stagnation, characterized by a sluggish and bidirectional flow velocity.
- This region has a subtropical monsoon climate, resulting about 70% of the annual precipitation occurring during the wet season (May to October).

3 Key Issues

3.1 Hydrological Stagnation

- 1. Research Significant
- 2. Methods and Materials
- 3. Impact on gases emissions
- 4. Driving Mechanisms

3.1.1 Research Significant

Transport of dissolved gases across the water to the air constitutes the main pathway for the CO₂ emission (>90% of the total) and is also a major pathway for CH₄ emission (~40% of total)

$$F = k \times (C_{\rm w} - C_{\rm air})$$

source	systems	CO ₂ /CH ₄
McGinnis et al. ¹⁸	temperate lake	0.4
Paranaiba et al. ⁶	three tropical reservoirs	0.4
Prairie and del Giorgio ¹³	boreal reservoir and lakes	0.43
Rantakari et al. ¹⁹	two boreal lakes	0.56
Rosentreter et al. ²⁰	six mangrove estuaries	0.83
Beaulieu et al. ⁵	temperate river	< 1
Guérin et al. ⁴	tropical reservoir	1.16
This study	four boreal lakes	1.68
Rosentreter et al. ⁷	mangrove river estuary	2.78

600

 $k_{600} = k_{\rm is} \times$

(Pajala et al., EST, 2023)

 $k_{600} (m d^{-1})$

The k-values of hydrological stagnant water is unclear

The incompatibility between k₆₀₀ for CO₂ and CH₄ generates questions7

3.1.2 Methods and Materials

Sampling Sites							
Name	Longitude	Latitude	River width (m)	Classification			
QP	31.11 °N	121.05 °E	120	Rural			
JD	31.37 °N	121.31 °E	20	Suburb (Agricultural)			
JS	30.80 °N	121.15 °E	20				
PD	31.16 °N	121.71 °E	30	Suburb (Industrial)			
SJ	31.02 °N	121.26 °E	25				
FX	30.99 °N	121.61 °E	18				
РТ	31.22 °N	121.40 °E	45	Center			

Sampling Dates

1.	Summer(Jul.,	2020)
----	--------------	-------

- 2. Autumn(Oct., 2020)
- 3. Winter (Jan,, 2021)
- 4. Spring (Apr., 2021)

Boundary Layer Model

Floating Chamber Measurement

3.1.3 Impact on gases emissions

All sampling rivers were gas supersaturated with water to air concentration ratios (Cw/Ca), they were overall sources of CO₂ and CH₄ to the atmosphere.

→ k_{600} -values (m d⁻¹): CH₄ (0.25-153.3) much higher than CO₂ (-0.35-0.68)

3.1.3 Impact on gases emissions

- > This study showed an overall unexpectedly low mean k_{600} -ratio (k_{600} -CO₂/ k_{600} -CH₄) of 0.08±0.21
- > The k_{600} -ratios showed significant spatial differences, with the largest in the rural areas and the lowest in the city center.

3.1.3 Impact on gases emissions

- \blacktriangleright Microbubbles is the main cause of the high k_{600} -CH₄ in urban rivers
- The contribution of bubbles is the highest in the center and the lowest in the rural area

 The CH₄ flux contribution of bubbles can reach up to 99% at most Temperature sensitive 	Sampling Sites	The CH ₄ flux contribution of bubbles / %
	PD	48.35±55.85
Ebullition ~99% $1,000$ $F_{\rm E}=104.95e^{0.1174T}$	JD	44.02±51.17
	FX	73.09 ± 34.08
$F_T = 24.04e^{0.1405T}$ Ebullition	QP Rural	33.66±41.79
Diffusion <1%	SJ	56.36±37.70
	JS	78.09±14.56
Urban Area $\bigcirc 0.1 +$ $\bigcirc 0.1 +$ $\bigcirc 0.1 +$ 5 101520253035Water temperature/°C $\bigcirc 0.1 +$ $\bigcirc 0.1 +$ $\bigcirc 0.1 +$ $\bigcirc 0.1 +$	PT Center	86.05±26.56

(Chen et al., EST, 2021)

(unpublished data)

3.1.4 Driving Mechanisms

Wind speed, dissolved oxygen (DO) and water temperature (T_w) are the main factors controlling k_{600} -CH₄ The k-ratios were exponentially correlated with wind speed, indicating that the mismatches between k_{600} for CO₂ and CH₄ will further increase under high wind speed conditions.

3.1.4 Driving Mechanisms

- > There were significant negative correlations between k_{600} -CO₂ and water DO, pH and Chlorophyll a.
- \blacktriangleright The geochemical factors become the dominant divers of CO₂ gas exchange.

(unpublished data)

The mismatches between k₆₀₀ for CO₂ and CH₄ are prone to occur in urban rivers and the resulting discrepancies can be substantial. In the future, when conducting flux estimates on a global or regional scale, such differences should be taken into account.

Bubbles increase the k₆₀₀-CH₄, while the chemical reaction mainly caused k₆₀₀-CO₂ lower. In order to eliminate this difference, errors can be reduced by adopting appropriate monitoring methods for and different gases.

3 Key Issues

3.2 Influence of Human Activities

Rapid development and increased human activity

Agricultural acticity

Residential sector

Excess organic matters and nutrients inputs from urban environments and their watersheds

Water Quality Improvement

SCIENCE ADVANCES | RESEARCH ARTICLE

ENVIRONMENTAL STUDIES

China's improving inland surface water quality since 2003

Ting Ma^{1,2,3}*, Na Zhao^{1,2†}, Yong Ni^{4†}, Jiawei Yi^{1,2†}, John P. Wilson^{1,2,5}, Lihuan He⁴, Yunyan Du^{1,2}, Tao Pei^{1,2}, Chenghu Zhou^{1,2}*, Ci Song^{1,2}, Weiming Cheng^{1,2}

The water nutrients load decreases and the dissolved oxygen concentration increases

3.3 Influence of Rainfall Effects

3.4 Influence of Tidal Effects

Neglecting drawdown zones might have resulted in the underestimation of GHG emissions from deltaic urban rivers.

References

- Yizhe Li, Dongqi Wang*, Chenyang Wu, Guanghui Zhao, Hechen Sun, Xin Xu, Yufang Li, Shengnan Wu, Fanyan Yang, Zhenlou Chen. (2025) Uncertainty of hydrological processes on greenhouse gas emissions from urban river driven by natural and anthropogenic factors. Journal of Hydrology, 657133058.
- Zhao, G., Wang, D*., Sun, T., Ding Y., Chen S., et al. (2023) Emission of greenhouse gas from urban polluted river during different rainfall events: typhoon and storm will promote stronger evasions. Journal of Hydrology. 625, 130166.
- Shu Chen, Dongqi Wang*, Yan Ding, Zhongjie Yu, Lijie Liu, Yu Li, Dong Yang, Yingyuan Gao, Haowen Tian, Rui Cai, Zhenlou Chen. (2021). Ebullition Controls on CH4 Emissions in an Urban, Eutrophic River: A Potential Time-Scale Bias in Determining the Aquatic CH4 Flux. Environmental Science & Technology.
- Yu, Z., D. Wang*, Y. Li, H. Deng, B. Hu, M. Ye, X. Zhou, L. Da, Z. Chen, and S. Xu (2017), Carbon dioxide and methane dynamics in a human-dominated low_x0002_land coastal river network (Shanghai, China), J. Geophys. Res. Biogeosci., 122, 1738–1758.
- Zhongjie Yu, Huanguang Deng, Dongqi Wang, Mingwu Ye, Yongjie Tan, Yangjie Li, Zhenlou Chen and Shiyuan Xu. (2013) Nitrous oxide emissions in the Shanghai river network: implications for the effects of urban sewage and IPCC methodology. Global Change Biology, 19, 2999–3010.

THANK YOU !

Questions?