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Outline

1. Current understanding of soil C stability
2. What does it mean for wetlands

3. Research Applications
1) Quantifying by habitat type
2) Maximizing C stability
3) Minimizing C stability

4) Documenting environmental change



Why study wetland soil carbon?
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Wetland soil carbon inventories are now
commonplace

(Radabaugh et al.,, 2023; Breithaupt et al., 2023; Bennett and Chambers, 2023; Hurst et al., 2022; Harttung et al., 2021;
Steinmuller et al. 2020a, 2020b; Ho and Chambers, 2020; Chambers et al., 2018; etc.)



Wetland can store a
ton of carbon...

...but it’s highly
vulnerable.

What controls which
C stays in the soil,
and which C is lost?
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Two theories have dominated wetland science:
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These theories led us to beljeve...

* If depth is a proxy for age, then C
degradability decreases with depth

* Biogeochemical studies can focus on top
~30 cm

* C:N decreases with depth, but N is
protected via “humification”

* Soil total C is an ecological significant
measurement
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These theories don’t always fit the data...
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Collaborators: John White, Robert Cook, Zuo “George” Xue
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Soil Cis more labile
! at depth?
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C:N doesn’t change down to 5m deep?
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No clear relationship between depth and
biochemical properties?

Hemicellulose Cellulose
How do we reconcile these inconsistencies =4
between theory and observation?

Percent Lignin Percent Ash




My eureka moment!

PERSPECTIVE

doi:10.1038/naturel 0386

Persistence of soil organic matter as an
ecosystem property

Michael W. L. Schmidt™*, Margaret 8. Torn®?*, Samuel Abiven', Thorsten Dittmar™®>, Georg Guggenberger®, Ivan A. Janssens’,
Markus Kleber®, Ingrid Kégel-Knabner”, Johannes Lehmann'’, David A. C. Manning', Paolo Nannipieri', Daniel P. Rasse'”,
Steve Weiner'* & Susan E. Trumbore'®

nature |

LETTERS

g60801€1’106

PUBLISHED ONLINE: 7 SEPTEMBER 2015 | DOI: 10.1038/NGE02520

Formation of soil organic matter via biochemical
and physical pathways of litter mass loss

M. Francesca Cotrufo"?*, Jennifer L. Soong', Andrew J. Horton', Eleanor E. Campbell’,
Michelle L. Haddix', Diana H. Wall"® and William J. Parton’

* “Since pioneering work in the 1980s, new

insights gathered across disciplines
(ranging from soil science to marine
science, microbiology, material science
and archaeology) have challenged
several foundational principles of soil
biogeochemistry and ecosystem models;
in particular, the perceived importance of
the ‘recalcitrance’ of the input biomass
(the idea that molecular structure alone
can create stable organic matter) and of
humic substances (biotic or abiotic
condensation products).”

(Schmidt et al., 2011)



Upland Soil Science: 4 Mechanisms of Carbon Protection

1) Biochemical Protection 2) Environmental Protection
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* Only “marginally important” in first
phase of decomposition

* Water-logging, low temps cause
* No support for humification microbial physiological inhibition

* Lignin continuously degrades



Upland Soil Science: 4 Mechanisms of Carbon Protection

3) Physical Protection (Aggregates)

together by polysaccharides,
bacteria, and plant debris

* Reduce microbial, enzyme, and fauna
access

4) Chemical Protection (Mineral
Associated Organic Matter)

Microcolonies The complexity
of bacteria = of soil

e
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“““‘-"'“’Hrabee 2000)
Physicochemical binding between
fine minerals (<53um) and organic
matter



If fine mineral associations are so critical in
uplands, what about wetlands?
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Anthony Mirabito

Measuring MAOM In
wetland soil

1) ~150g field moist so1l
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2.) 0.5% sodium
3 hexametaphosphate
k4
/ 3'} “Jet Sie‘rmg \
<53um 53um-250um 250pm-2mm =2mm
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5.) Soil mass and total carbon analysis

Fig. 4. Physical and density soil fractionation method adapted from Six et al., 1998 and Cotrufo et al., 2015 (Mirabito and
Chambers, in prep).
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How much MAOM is in wetland soils?
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* Florida Inland Bayhead Swamp
* 85% soil organic matter
 Low mineral content

“High Organic”

« Florida Inland Cypress Dome  Coastal Louisiana Salt Marsh

* 13% soil organic matter * 20% soil organic matter
« High sand content  High silt & clay content

« High Sand” “ High Silt”

(Mirabito and Chambers, 2023)



Total carbon is inversely related to ‘stable’ carbon
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Research Applications in Soi
Carbon Stability:

1) Quantifying by habitat type
2) Maximizing C stability
3) Minimizing C stability

4) Documenting environmental
change




What does stability mean for “Blue Carbon”?

Tidal marshes Mangroves Seagrass

High water level

Blue Carbon: The carbon captured by living coastal and marine

organisms and stored in coastal ecosystems, including salt marshes,
mangroves, and seagrass beds.



Quantifying “Blue Carbon” habitats by stability
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Field Methods

Five 0-30 cm soil cores from each of the 5 coastal habitats




Lab Methods

* C quantity: %0OM and
total C analysis

 C stability: physical and
density fractionation into
POM and MAOM

* General physicochemical
soil properties

e Total and organic-bound
metals (ICP-MS)
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(Chambers et al., in prep.)
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Total Protected Carbon (MAOM)
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% of Total Carbon as MAOM-C
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* Understanding metal and mineral

composition is the next step

Hydrophobic interaction
c—}" with organic matter

—Ca — Ligand bridging through

o = C O N\/\/ divalent cations
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(Li et al., 2018)
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Coastal Restoration to Maximize C stability

If minerals are limiting, could dredge
sediment enhance carbon stability?

Collaborators: Nia Hurst and Jacob Berkowitz
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Maximizing carbon stability in vulnerable soils: the
Everglades Agricultural Area (EAA

4 k ' =
: - UF UNTVERSITY of *
Subsidence Post EFEASLDIHEA
In 1924, this 9-foot concrete post was driven to bedrock.
The top of the post was set level with the soil surface.

LAKE
OREECHOBEE

In 1977, a photograph revealed 58 inches of visible post;
icati { 1 inch of i per year.

The top of the post was 72 inches above ground in March of
2008, indicating 6 feet of soil subsidence in the past 84 years.

Annual subsidencerates have declined from approximately
1inch per year to approximately b2 inch per year. This

deerease has been partially attributed to Best Management
Practices implemented by local growers.

Mumtahina Riza
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Collaborators: Jango Bhadha and Jing Hu



Aggregates
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Thursday 10:30-10:50am

Mumtahina Riza, How to Increase Mineral-
Associated Organic Matter Formation in Organic
Rich Soils



Using management to minimize C stability:
Orlando Easterly Wetlands
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Wetland renovation
“demucking”)
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20g clay decreased CO, flux by 30%, and
increased MAOM content by 50%
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(Boudreau et al., 2024)



Documenting impacts of mangrove
encroachment + nitrogen enrichment
carbon stability

Mercedes Pinzon

VC”oIIéborators: Samatha Chapman and Adam Langley



What are the dominate pathways of MAOM
formation in marsh and mangrove?
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Key Findings

* Wetlands with the most soil C, typically have
the least amount of stable C (as MAOM)

* Texture (presence of silt & clay) and metal
composition play a key role in MAOM
formation

* MAOM can decrease CO, loss
* Aggregates can also be present in wetlands with minerals

-

* Future work should measure both total C and C stability to
understand vulnerability of the soil C pool






Thank you

Biogeochemistry
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