UNDERSTANDING THE ROLE OF MINERAL WETLANDS AS NATURE-BASED
CLIMATE SOLUTIONS IN AGRICULTURAL REGIONS OF CANADA
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Wetlands as Nature-Based Climate Solutions

Climate mitigation potential in 2030 (Tg CO,e/year)
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Wetlands total

* Wetlands can provide 15.5 (5.5 to 34.9) Tg CO_,e/year in 2030 and cumulatively
82.6 (27.0 to 195.6) Tg CO.e between 2021 and 2030.
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Wetlands as Nature-Based
Climate-Change Solutions

Project leads: Irena Creed (UTSC) and Pascal Badiou (DUC)

Lauren Bortolotti, James Paterson, Paige Kowal, Bryan Page,
Lee van Ardenne (DUC); Matt Bogard, Larry Flanagan (U
Lethbridge); Sara Knox, Gail Chmura, Christian von Sperber
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Prairie Pothole Region:

« Contains 5-8 million small
wetland basins depending
on moisture conggtions

a

I Prairie Pothole Regio
[ United States
Canadian Provinces
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Survey of wetlands embedded  *° .
in cropland vs 7 20-
pasture/grassiand £
S 151

« 31 wetlands were sampled, cropland (n=17), % o

pasture/grassland (n=14) é 1.0 1
« Mean [P] in cropland wetlands (0.98 mg L") 2

were more than 3x those in grass/pasture § 0.5

wetlands (0.28 mg L) ﬂc_é
 Median [P] in cropland wetlands (0.78 mg L") 2 001 °

were more than 40x higher than those in

grass/pasture wetlands (0.02 mg L") ' '
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Research Design - PPR

Monitored ~ 100 wetland sites across the three
soil zones of the PPR (50% cropland, 50%
perennial cover)

Water quality / Water level

Diffusive fluxes

Ebullition (bubble traps)

Sediment cores, dating Pb210/Cs137, carbon
accumulation

Deployed 3 wetland eddy covariance flux
towers in Manitoba
* Also measured diffusive fluxes, ebullition,
and emissions through emergent vegetation




Extensive monitoring program in the
PPR to examine the impact of landus
around wetlands on GHG emissi

Wetlands in perennial cover

« 1504 (1,041 mg/L) +TP (0.5 mg/

Wetlands in cropland
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CH, fluxes are higher in wetlands in cropland
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First Eddy Covariance

Flux Tower deployment
Manitoba in Prairie Wetlands
; Manitoba : CA-EMA R
CA-EM2 L « CA-EM1 is surrounded
T by croplands.
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CA-EM3
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Daily mean fluxes of
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NEE (gC m~? year™1)

Large variability in GHG fluxes across sites

(b) FCH4
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DIFFERENCES DRIVEN BY VARIATIONS IN WATER CHEMISTRY?

------
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Comparison of flux tower CH4 emissions and
IPCC default emission factors

TABLE 5.4 Prairie Flux Tower CH4 emissions
DEFAULT EMISSION FACTORS FOR CH,; FROM MANAGED LANDS WITH IWMS WHERE WATER TABLE
LEVEL HAS BEEN RAISED .
« CA-EM1 wetland - (in cropland)
EF cugmwn .
Climate Region CHAIAE 95% Confidence Interval® Numb(.el of 50.7 kg CH4/haly
(kg CH4 ha-l yl‘_l) Studies
Boreal 76 +76° 1 « CA-EM2 wetland - (in perennial)
e — 235 +108 o1 6.7 kg CH4/haly
T | g00 +450 3
i « CA-EM3wetland - (large

restored marsh) 216 kg CH4/haly

* Need to consider landuse
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Wetlands help buffer
against the impacts of
climate change
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4t = Evident cooling effects of surface wetlands to mitigate climate change
' - a study of the Prairie Pothole Region (Zhang et al., 2021)

Dynamic wetland scheme was tested using the coupled WRF model,
demonstrated evident cooling effect of 1~3°C in summer where

wetlands are abundant
Simulation indicated a reduction in the number of hot days by more

than 10 days over the summer period
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Biophysical impacts of wetlands on local and regional
climate (observed at wetland tower sites)

'«  Wetland (CA-EM1)
«  Wetland (CA-EM2)
. Wetland (CA-EM3)
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(a) Mean diurnal aerodynamic
temperature (A Taero)
differences between the
respective wetland sites and the
mean of the reference cropland
sites during the growing season
(May— September) and (b)
Mean daytime and nighttime A
Taero for the three wetlands
(from Ahongshangbam et al.,
2025 in review).




Wetland surface temperature profile
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Organic cropland
Conventional cropland

Do wetlands produce a
goldilocks zone where

crop yield is improved,
particularly in times of
drought?

Image © 2024 Airbus




Conclusions

« Landuse surrounding prairie wetlands appears to regulate CH4 emissions by influencing
water quality.

« CH4 emissions at wetland flux towers over a 3-year period suggest that Tier 1 IPCC
default emission factors significantly overestimate emissions from prairie wetlands.

« When considering the role of wetlands as nature-based solutions for mitigating impacts
of climate change we also need to consider their biophysical impact at the local/regional
scale.

« Next steps, examine soil amendments and/or targeting of wetland restoration to reduce
methane emissions based on drivers.
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