Assessment of Soil Greenhouse Gas Fluxes Along a Salinity Gradient in the Coastal Deltaic Floodplain of Louisiana

Jose Fernando Tercero,^{1*} and Robert Twilley¹

¹Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, US.

Introduction

- Salt marshes are potentially a source of methane (CH₄) and nitrous oxide (N₂O).¹
- Climate change and human activities are threatening these ecosystems, with unclear implications for greenhouse gas (GHG) emissions.²
- Estuarine marshes in the Louisiana Delta have been negatively affected by the relative rise in sea level and changes in river discharge, which have led to significant

Methodology

- The study sites included:
 - Wax Lake Delta/Mike Island for:
 - Freshwater
 - Fourleague Bay for:
 - Saline (> 20 ppt)
 - Brackish (~4 ppt)
- Soil gas fluxes are measured using a chamber and trace

—— College of the ——

Coast & Environment

seasonal shifts in salinity.³

Objective

To assess the fluxes of carbon dioxide (CO_2) , methane (CH_4) , and nitrous oxide (N_2O) across a salinity gradient (brackish, saline, and freshwater) and among different vegetation types at three sites.

- gas analyzer (LI-COR).
- Monitored parameters included:
 - Microbial communities
 Pore water
 - Organic matter
 - Water level
- Redox

Nutrients

• The experimental design will be a Repeated Measures Design (RMD) with an ANOVA (p < 0.05).

Climate change impacts on precipitation patterns in the upper Mississippi River Basin may significantly affect CH₄ fluxes and greenhouse gas (GHG) production in the coastal deltaic floodplains of the active Mississippi River Delta. Thus, CH₄ fluxes are expected to increase with

greater river discharge as salinity decreases.

REFERENCES:

1. Campbell, A. D., Fatoyinbo, L., Goldberg, L., & Lagomasino, D. (2022). Global hotspots of salt marsh change and carbon emissions. Nature, 612(7941), 701–706.

2. Rosentreter, J. A., Al-Haj, A. N., Fulweiler, R. W., & Williamson, P. (2021). Methane and Nitrous Oxide Emissions Complicate Coastal Blue Carbon Assessments. Global Biogeochemical Cycles, 35(2).

3. Das, A., Justic, D., Inoue, M., Hoda, A., Huang, H., & Park, D. (2012). Impacts of Mississippi River diversions on salinity gradients in a deltaic Louisiana estuary: Ecological and management implications. Estuarine, Coastal and Shelf Science, 111, 17–26.

*For additional information, please contact Jose Fernando Tercero at jterce1@lsu.edu