Diel Fluctuation of Carbon Dioxide Emission Affected by Eutrophication and Dissolved Organic Matter in China's Largest Urban Lake

Yang Wang¹, Y. Jun Xu², Yifei Zhang¹ and Siyue Li¹ ¹Wuhan Institute of Technology, Wuhan, China. ²Louisiana State University, Baton Rouge, LA USA

The large variability of carbon dioxide (CO₂) emissions from urban lakes remains a challenge for partitioning these sources at meaningful spatial and temporal scales. Dissolved organic matter (DOM) governs spatial and temporal variations in CO₂. Yet, relationships of CO₂ concentration (cCO₂) and emission flux (FCO₂) with DOM in urban lakes have rarely been reported. In this study, we monitored cCO₂, FCO₂ and DOM composition over a 24-hour period at three sites in dry and wet seasons in China's largest urban lake, the Tangxun Lake. Our study found the ratio of day/night FCO₂ (mmol m⁻² d⁻¹) decreased from the dry season (0.79; 7.68/9.68) to the wet season (0.25; 6.05/24.16), averaging 0.42 (6.77/15.97), implying that accounting for nighttime CO₂ emissions can elevate regional estimates by 70%. This study revealed that eutrophication affected diurnal CO₂ emissions with an increased algal growth enhancing daytime CO₂ uptake and subsequently increasing nighttime CO₂ emissions via DOM degradation (higher protein-like DOM fraction). We anticipate that the relative magnitude of FCO₂ between day and night from lakes is likely to increase due to urbanization and climate change, underscoring the importance of treating urban lakes as a distinct group, and integrating DOM dynamics into carbon cycling in future research.