Use of Herbicides to Control Aquatic Plants:

Special Challenges Posed by the Submersed Environment

Michael D. Netherland
Research Biologist
ERDC – Gainesville, FL
What Challenges?

- Regulatory requirements
 - Aquatic Label, State Permits, Federal Permits
- Stakeholder Pressure
 - Public waters = heavy public scrutiny
 - Too much control, not enough control, timing….
 - Private waters = high expectations
- Technical Aspects of Submersed Use Patterns
We treat where people live, work, & play!
12 Herbicides Labeled for Aquatic Use
(223 labeled for terrestrial use)

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Year(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (1900’s)</td>
<td></td>
</tr>
<tr>
<td>Endothall (1960)</td>
<td></td>
</tr>
<tr>
<td>Glyphosate (1977)</td>
<td></td>
</tr>
<tr>
<td>2,4-D (1950, 76)</td>
<td></td>
</tr>
<tr>
<td>Diquat (1962)</td>
<td></td>
</tr>
<tr>
<td>Fluridone (1986)</td>
<td></td>
</tr>
<tr>
<td>*Amitrole, Dicamba, Dalapon Simazine, Fenac, Dichlobenil, Silvex (most cancelled in 1987)</td>
<td></td>
</tr>
<tr>
<td>Triclopyr (2002)</td>
<td></td>
</tr>
<tr>
<td>Carfentrazone (2004)</td>
<td></td>
</tr>
<tr>
<td>Imazapyr (2003)</td>
<td></td>
</tr>
<tr>
<td>Penoxsulam (2007)</td>
<td></td>
</tr>
<tr>
<td>Imazamox (2008)</td>
<td></td>
</tr>
<tr>
<td>Flumioxazin (2010)</td>
<td></td>
</tr>
</tbody>
</table>

* BUILDING STRONG®
A Further look at Aquatic Herbicides

- 8 Modes of action (16 defined MOA)
- 7 Enzyme specific inhibitors (3 ALS inhibitors)
- Glyphosate, Imazapyr – emergent use only
- No Aquatic Label
 - ACCase inhibitors, PS II inhibitors, Mitosis inhibitors, Lipid biosynthesis inhibitors
- Are any herbicides used for aquatics only?
 - Fluridone, Endothall
 - All have a terrestrial history
Aquatic Herbicides – a wide variety of sites, plants, application methods, formulations
Treatment Principles - the Same

- Proper Plant I.D.
- Know the Strengths and Weaknesses of the Herbicides
- How might Environmental Conditions Impact the Treatment?
- Concentration and Exposure Relationships
 - Submersed
Plant Identification

- Numerous submersed plants
 - Beneficial and Invasive
- Some sites require mgmt. regardless of species
 - Use of water body
- Proper Identification = Proper Mgmt.
Hydrilla

Monoecious or Dioecious?

Egeria densa E. najas

Elodea?
Eurasian Hybrid Northern

Variable Milfoil

Cabomba
Algae as Invasive Plants?

- Microcystis bloom in FL
- AVM – linked to bird deaths
- Golden Algae
- Massive Fish Kills in TX
- Prymnesium parvum
Submersed Plant Control

Targeting a moving three-dimensional environment

“Maintaining adequate exposure is crucial”
Product Dispersion – An issue of Scale

Race Between Vertical Mixing And Lateral Dispersion

Diquat – hrs of exposure
Endothall – 1-7 days of exposure
Fluridone – 60+ days of exposure

Product Dispersion

TARGET Control Area

Thermal Gradient

US Army Corps of Engineers
Engineer Research and Development Center
Use of Herbicides for Submersed Plants

- You Treat the Water to Achieve a Desired Aqueous Concentration
 - You are Targeting the Plants!

- Each Herbicide Has a Plant Species Unique Concentration/Exposure Profile
 - Concentrations can range from 5 to 5000 ppb
 - Exposure requirements can range from a few hours to months
Misconceptions with Aquatic Herbicides

- Aquatic plants “take up” most of the herbicide
 - Plant uptake = 1 to 5% of herbicide
- Herbicides mix rapidly top to bottom
 - Herbicide trapped via thermal gradients
- Dispersion is a minor factor
 - e.g. All 3 ppm treatments should work the same
 - Wind/Flow move herbicide off-target
- Herbicides Are Just Dumped Into the Water
Many Factors Impact Submersed Applications

- Plant Density & Growth Rate
- Conditions on the DOT
- Conditions can change
- Water quality / temp / epiphytes
- Water exchange (CET)
- Trmt. Block & edge/ acre
If you know the water flow rate (CFS), you can Inject a desired concentration for a known time!!
- single injection site = 100’s of miles of control

- Endothall - registered in 1960 completed food tolerance studies in 2009 and significantly changed an entire market
Linear Flow Systems (2)

Short distance canals – significant challenge
e.g. 1 mile canal flowing at 10 CFS
Flow estimates can be crude (dye)

Easy → Hard → Hygrophila

Hydrilla
What Makes Hygrophila so Challenging?

Emergent form is susceptible to several herbicides
- Excellent control on dry ground

Long concentration and exposure requirements =
- high cost and high volume
Submersed Treatment Strategies for Floating and Floating Leaf Plants?

Giant Salvinia

Deep in the Cypress
Hydrilla – Moving North

Eurasian Watermilfoil –
- Northern Lakes
- Hybridization

Curlyleaf Pondweed – Northern Lakes
Endangered species

Native Plant Impacts, Monitoring

Flood Control /Structures

AVM and waterfowl mortality

Multi-agency jurisdiction - Access/Navigation/Recreation
Why Manage Milfoil or Hydrilla?

- Provides Structure and Food
 - Hydrilla - same role as native plants
 - Clears up the water
- Do Not Produce Toxins (e.g. golden algae)
- Valued by the Fishing and Hunting Communities
 - “Fishing the Edge” “Ringneck duck buffet”
- Growth Rate and Ability to Occupy Vast Contiguous Areas are the Problem
 - Access, Flood Control, Fishery Mgmt.
 - Water Quality
 - “Just leave us a little”
Is there a right amount of an invasive plant? (Do we want 30% coverage for fisheries?)

If so, then how do you maintain that level?
Management of Submersed Aquatic Vegetation

Vallisneria or Eel Grass

Illinois Pondweed

Potamogeton illinoensis

Southern Naiad

Najas guadalupensis
Maximizing Selectivity

- Timing can have a major impact on selectivity
 - Different species have maximum growth at different times
- Species composition is very important in herbicide selection
 - Lack of impacts to non-targets may be equally or more important than impacts on the target.
Slow Acting Enzyme-Specific Inhibitors

 - Low mammalian and fish toxicity
 - No restrictions on drinking, swimming, fishing
 - Use rates in the range of 5 to 20 ppb
 - Long-term exposures required
 - Whole-lake or large scale use
 - Large body of research on whole-lake fluridone for control of EWM
Auxin-Mimic Herbicides

- 2,4-D (1959, 1976) and Triclopyr (2002)- disrupt growth & metabolism
 - Epinasty (bending of leaves and stems)
 - Translocated in phloem
 - Many monocots are highly tolerant
 - Used for both submersed and emerged plants
Contact Herbicides (Diquat, Endothall, Flumioxazin)

- What does that mean in Aquatics?
 - Do not Kill on Contact (e.g. bleach)
 - Must come in “Contact” with the plant tissue for an appropriate / critical period of time
 - Application techniques are very important
 - Not readily translocated in the plant tissue
Environmental Fate

Photolysis – fluridone & penoxsulam (7-30 d), triclopyr and imazamox (4-10 d)

Microbial – 2,4-D (4-10 d), endothall (2-10 d)

Hydrolysis – carfentrazone, flumioxazin (hrs to 1 day – pH)

Deactivation –
 diquat – negatively charged particles (sediments – minutes to days – WQ)
 Glyphosate – binds to cation ions (Ca,Mg) – minutes
Once Initiated - Herbicide Approach Requires Vigilance

- Rare for one treatment to “solve” a problem
 - Early detection /rapid Response Programs
- Eradication programs – multiple years
- Invasive Plant Mgmt. – multiple years
- Rare for one treatment to “ruin” a lake
 - Wrong herbicide or use rate – possibly
 - Right herbicide and use rate - No
Advantages of Herbicide Use

- Can treat small as well as large areas
 - Target site is reasonably defined
- Proper choice & rate = selectivity
- Newer Products – strong toxicology profiles
- Compatible with other tools
- Best tool for initially removing large amounts of invasive vegetation
Disadvantages of Herbicide Use

- Commitment to long-term management
- Cost
- Can sometimes select for a worse problem
- Target Plants will ultimately recover
- Public perception of chemical use
Questions to Ask

- What is the Major Use of the Water?
 - Irrigation, retention, recreation, multipurpose

- Where Does the Treated Water Go?
 - What is downstream & how fast does it get there

- Are Fish an Important Resource?
 - Pay attention to water temp., DO, plant mass

- Is site susceptible to rapid turnover?
 - Flow, significant rain event