Biological Control of Brazilian Peppertree, *Schinus terebinthifolius*

James P. Cuda, PhD
Associate Professor
jcuda@ufl.edu

Aquatic Weed Control Short Course
Thursday, 6 May 2010
Acknowledgements

- Robert Barreto
- Fred Bennett
- Lyle Buss
- Pat Conant
- Kenia Duran-Aguirre
- Bolivar Garcete-Barrett
- Judy Gillmore
- Dale Habeck
- Veronica Manrique
- Julio Medal
- Onour Moeri
- Kenyatta Nichols
- Bill Overholt
- Tanya Stevens
- Marcelo Vitorino
- J.H. Pedrosa-Macedo
- Dean Williams

- FWC (Florida DEP)
- SFWMD

(Photo credit: Bryan Harry, NPS)
Outline

• Introduction
• Status of Candidate Biological Control Agents
• Questions? Comments?
Outline

• Introduction
• Status of Candidate Biological Control Agents
• Questions? Comments?
Bazillion Peppertree
Schinus howterribleyouvebeeenforus

Galveston, Texas
Brazilian Peppertree (BP)

- **US DISTRIBUTION:-**
 - Arizona, California, Florida, Hawaii, Texas, Louisiana, Caribbean Islands

- **ORIGIN:** Brazil, Argentina, Paraguay

- **DESCRIPTION:-**
 - Evergreen Shrub
 - Compound Leaves
 - Red Berries
 - Several ‘Varieties’
 - Dioecious

Range of Brazilian peppertree in North America

Schinus terebinthifolius

USF Herbaceous Sibie Collection
Typical Female BP Plant

M. Clark 2008
Native Range of BP

Center of origin of Brazilian peppertree and its natural enemies
History of BP in Florida

- Date of First Introduction Uncertain
 - As Early as 1884, More Likely ca. 1900
- Popularized as Ornamental by George Stone, Punta Gorda, ca. 1926
- Recognized as Invasive Weed
 - During 1950s - 1960s
- Currently Estimated to Occupy > 700,000 acres
- Distribution in North Florida Appears to be Limited by Lack of Cold Tolerance?
“New” Distribution of BP

BP Supports Other Invasive Species

Diaprepes Weevil
http://creatures.ifas.ufl.edu/citrus/S_R_B_W_TW4.htm

Redbanded Thrips
http://entnem.ifas.ufl.edu/creatures/orn/thrips/redbanded_thrips.htm#desc
BP May Threaten Public Health

Reiskind et al. (2009)

http://entoplp.okstate.edu/mosquito/images/aealboeggs4.jpg
http://biology.clc.uc.edu/fankhauser/Animals/mosquitoes/Aedes_albopictus_P9071863.JPG
BP Pollen Causes Problems

Jarzen and Nelson (2008)
Growth Habit of BP

Southeastern Brazil

Everglades National Park

Don Schmitz FWC
Why is BP Invasive in FL?

• Multiple Genotypes & Hybrid Vigor

Williams et al. (2005, 2007)
Why is BP Invasive in FL?

Enemy Escape Hypothesis (Williams 1954)

- Native Specialist Enemies Strongly Control the Abundance and/or Distribution of Native Plants
- Escape from Specialist Enemies is a Key Contributor to Exotic Plant Success
- Enemy Escape Benefits Exotics Because They Gain a Competitive Advantage Over Native Plants as a Result of Being Liberated from Their Pests
BP Targeted for BioControl

- Non-native Invasive Species
- Causes Severe Ecological Damage
- Toxic and Allergenic (Poison Ivy Family)
- Low Beneficial Value (Beekeepers?)
- Conventional Controls Temporary, Costly
- No Native Congeners in US !!!
Late 1980s

- Extensive Faunal Surveys Conducted in Brazil by UF/IFAS
- Collaboration with Local Scientists Established

Bennett et al. (1990)
BP BioControl Project Objectives

• Collect Promising Natural Enemies in SA
• Conduct Biological & Impact Studies with Candidate BioControl Agents
• Import BioAgents & Develop Rearing Procedures
• Perform Host Specificity Testing Required for Release into Florida
• Release / Evaluate Performance of Approved BioControl Agents
Outline

- Introduction
- Status of Candidate Biological Control Agents
- Questions? Comments?
BP Natural Enemies

1. Thrips
 - Damages Shoots
2. Sawfly
 - Defoliator
3. Seed Wasp
 - Attacks Fruits
4. Weevil
 - Stem Feeder
5. Psyllid
 - Galls Leaves
6. Leafroller
 - Defoliator
7. Fungus
 - Leaf Spot
BP Natural Enemies

1. Thrips
 - Damages Shoots

2. Sawfly
 - Defoliator

3. Seed Wasp
 - Attacks Fruits

4. Weevil
 - Stem Feeder

5. Psyllid
 - Galls Leaves

6. Leaf roller
 - Defoliator

7. Fungus
 - Leaf Spot
Late 1980s

- Discovery of Adventive Torymid Seed Wasp

(Habeck et al. 1989, Cuda al. 2002)
1. Thrips
 - Damages Shoots
2. Sawfly
 - Defoliator
3. Seed Wasp
 - Attacks Fruits
4. Weevil
 - Stem Feeder
5. Psyllid
 - Galls Leaves
6. Leafroller
 - Defoliator
7. Fungus
 - Leaf Spot
Pseudophilothrips ichini (Hood)

- **Adults** - Black, Winged
- **Females** Live ca. 50 days & Deposit 220 Eggs
- **Oviposit on New BP Growth**
- **Four Generations in Brazil** (Garcia 1977)
Pseudophilothrips ichini (Hood)

- Larvae- Red or Orange; Feed on Tender Growth
- Damage / Kill New Shoots & Young Plants
- Only Collected on BP in S. America (Garcia 1977)
- Laboratory & Field Host Range Testing Confirmed Specificity (Cuda et al. 2009)
- Recommended for Field Release by TAG
No-Choice Larval Development Tests

Two *Schinus* spp.:
- *S. terebinthifolius* sensu lato
- *S. molle*

Cuda et al. 2009
BP Natural Enemies

1. Thrips
 - Damages Shoots

2. Sawfly
 - Defoliator

3. Seed Wasp
 - Attacks Fruits

4. Weevil
 - Stem Feeder

5. Psyllid
 - Galls Leaves

6. Leafroller
 - Defoliator

7. Fungus
 - Leaf Spot
Episimus unguiculus Clarke

A

B

C

Martin et al. (2004)
Biological Control History of *E. unguiculus*

- 1954- Introduced into Hawaii (*Episimus* sp.)
- 1955, 1956 - Additional Releases Made
- 1957- Establishment Confirmed
- 1978- Occasional Heavy Infestations
- 2002- Widely Distributed; Minimal Impact
 - Spillover of Parasitoids Released for Agric. Pests Since 1960

“...Out of [all] parasitoids reared from caterpillars collected [in Hawaii], most (83%) were biological control agents introduced against lowland agricultural pests. ...”

Hennemen & Memmott. 2001. *Science*
Colony Production

YEAR

Males
Females
Total

YEAR

2001 2002 2003 2004 2005 2006 2007 2008
Survivorship Curve of *E. unguiculus*

- Mean daily I_x values
- Mean I_x for beginning of each stage
- Mean daily mx

Days after oviposition

Survival (I_x)

- Egg
- Pupa
- Adult

Martin et al. (2004)
Effect of *E. unguiculatus* on BP

- Larvae Feed Inside Leaflet Rolls During Development
- Capable of Defoliating Entire Plants
Simulated Herbivory Studies
UF/IFAS, IRREC, Ft. Pierce

Treadwell and Cuda (2007)
Life History Parameters on BP Genotypes

Manrique et al. (2008)
Multiple Choice Test

![Chart showing multiple plant species with Brazilian Peppertree having the highest count.]

- Brazilian Peppertree: 140
- Native Sumacs: 80
- Poisonwood: 40
- Pistachio: 20

Legend:
- a: Most abundant
- b: Considered less abundant than a

Species: SCTE, COCO, CODO, RHAR, RHCO, TOVE, METO, PICH, PIVE, ANOC, EUCA

- 48 Fam., 90 Spp.
Predicted Distribution of *E. unguiculus*
WORLDCLIM Ecological Niche Model

Pistachio Crop
Conclusions

- *Episimus unguiculus* is a Precedented BioControl Agent
 - Established in Hawaii since 1950s
 - Field Host Specificity Documented
 - Impact on BP Compromised by Parasitism?
- Capable of Sustained Reproduction Only on BP
 - Demonstrated in Lab. & Open-Field Choice Tests, Lab. Multi-Generation Tests
Conclusions (cont’d)

• Larval Feeding Damage Should Impact BP Growth & Reproduction
 – Confirmed by Field & Laboratory Herbivory Studies
• Risk to Cultivated Pistachio Acceptable
 – Climate in Western US Would Preclude Establishment (= Geographical Incompatibility)
• Petition for Field Release Submitted to TAG in September 2009
1. Thrips
 - Damages Shoots
2. Sawfly
 - Defoliator
3. Seed Wasp
 - Attacks Fruits
4. Weevil
 - Stem Feeder
5. Psyllid
 - Galls Leaves
6. Leafroller
 - Defoliator
7. Fungus
 - Leaf Spot
Apocnemidophorus pipitzi (Faust)
(Col: Curculionidae)
Life Cycle of A. pipitzi

No. Adults

3-4 months

Jul '07 Aug '07 Sep '07 Oct '07 Nov '07 Dec '07 Jan '08 Feb '08 Mar '08 Apr '08
Host Range Testing Procedure
Adult Survivorship Curves

Survival (%) vs. Time (Weeks)

- SCTE
- SCMO
- RHCO
- ANOC
- CODO
- RHGL
- RHSA
- RHIN

Brazilian Peppertree

Lemonade Sumac
Brazilian Peppertree
Hardee Peppertree
(Schinus polygamus)

19 Fam., 47 Spp.
Summary

• *A. pipitzi* Weevil First Stem Borer of BP Established in Quarantine
• Biological & Host Range Studies Completed
 – Results Suggest it is BP Specialist
• Stem Boring Habit of Developing Larvae Should Protect Weevil from Predation
• Release Petition is in Preparation
Brazilian Peppertree Management Plan

- BP Management Plan Revised 2006
 - 2nd Edition Available
 In Print and On-Line:

http://www.fleppc.org/Manage_Plans/schinus.pdf
Outline

- Introduction
- Status of Candidate Biological Control Agents
- Questions? Comments?