Central Big Sioux River Watershed
Environmental Markets
Environmental Market Programs for Pollutant Reductions

• This material is based upon work supported by the Natural Resources Conservation Service, U.S. Department of Agriculture, under number 69-3A75-12-177. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the U.S. Department of Agriculture.
Project Background

Who: Moody County Conservation District

What: Evaluated environmental market approaches

How:
- Establish a Technical Review Team
- Benchmark salient programs
- Assess pollutant suitability
- Assess financial attractiveness
- Develop market rules and infrastructure
- Test program framework
- Public outreach
Project Area
Environmental Markets Considered

• Water Quality Trading

• Payment for Ecosystem Services (PES)
 PES program -- A buyer pays another entity to provide a new environmental benefit
 - **Municipality Examples:**
 - Reduce nitrates in wellhead protection areas for drinking water supply
 - Reduce stream peak flows and/or increase the base flows
 - Reduce water quality parameter loadings upstream of river reaches flowing through the city

• Basic PES program currently in operation
Pollutant Suitability Assessment

- **Total Suspended Solids**
- *E. coli* bacteria – A pathogen, and used as an indicator of other pathogens
- Are there adequate load reduction drivers?
- Consideration of persistence throughout different flow regimes
- Determination of supply to demand ratios
- Equivalent water quality parameter forms?
Big Sioux River and *E. coli* Persistence

- Diversion Channel

Bacteria Contributions to BS 11 During Exceedances
Suitability Findings

- Cost effective, pennies on the dollar
- Environmental markets alone are not sufficient
- Agricultural/urban sources are not fully comparable regarding forms of pathogens
- *E. coli* bacteria have a limited persistence
- The river diversion structure increases complexity
 - Upper BS-10 and the unnamed tributary to Skunk Creek have limited potential for offsetting local stormwater loading with agricultural generated credits
 - In key reaches, bacteria is not completely flushed away
- Inadequate load reduction driver for total suspended solids
Enhanced Payment for Ecosystem Services Options

- Public transparency
- Third party checks and balances
- Application and/or request for projects windows (e.g., open windows, reverse auctions, etc.)
- Cost-effective site selection

Program transparency and third party oversight strengthens support when requesting longer permit compliance schedules and/or a variance.
Pilot Testing

- Three landowners/livestock producers in the Skunk Creek Watershed have agreed to test the protocols
 - One livestock feeding operation
 - Two livestock grazing operations
Pilot Test Conservation Measures

Seasonal Riparian Area Management (SRAM) (Before) (After)
Pilot Test Conservation Measures

AFO Heavy Use Lots; Bacteria in Runoff Loads Streams During Large Events (Before)

Move Cattle to Remote, Mono-slope Barns Sites; Preventing Runoff (After)
SRAM Monitoring
SRAM Monitoring

- Water Quality monitoring results

E. Coli

Box Plot of *Escherichia coli* (cfu/100mL) for four sites on Skunk Creek
National Water Quality Initiative

- Beneficial Use: Limited Contact Recreation
- Daily Maximum Standard: 1,178 cfu/100mL
- Geometric Standard based on 5 samples: 630 cfu/100mL

TSS

Box Plot of Total Suspended Solids (mg/L) for four sites on Skunk Creek
National Water Quality Initiative

- Beneficial Use: Warmwater Marginal Fishery
- Daily Max Standard = 263 mg/L
- 30-day Average Standard = 150 mg/L
Thank you!

Jack Majeres, Administrator & Barry Berg, Project Coordinator, Moody County Conservation District, Phone: 605-997-2949 ext. 3
James Klang, P.E., Kieser & Associates, LLC
Phone: 269-344-7117