Measuring BRIs Using Ecological & Social Context

Lisa Wainger, PhD
University of Maryland Center for Environmental Science
Solomons, MD
wainger@umces.edu
Outline

1. Review BRI definition
2. How end uses of BRIs inform their development
3. Creating & measuring BRIs
4. Examples and methods for overcoming data gaps
5. Aggregation and other analytic considerations
6. Sources of additional information
7. Group exercise – Developing BRIs
What are Benefit Relevant Indicators (BRIs)

- Measurable indicators that capture the connection between ecosystems and people
- The point of hand off between ecologists and economists – that combine ecological and social information
- A complement or stepping stone to valuation or an alternative

Diagram:
- Action
- Ecosystem function: Ecological indicators
- Ecosystem service: Benefits relevant indicators (eco+soc data)
- Social benefit: Benefits Assessment (value/preference)
BRIs identify conditions under which an ecological change is likely to be valued

Ecosystem Service Opportunities

Biophysical changes
- Δ wave height
- Δ water quality
- Δ habitat
- ...

Human Well-Being Outcomes

Health & Safety
- Home protection
- Food production
- Water supply
- ...

Fulfillment
- Recreation
- Satisfaction of environmental stewardship
- ...

BRIs
How are BRIs Used?

1. Quantitative Communication
 • Summarize impacts in quantitative units
 • *Tons CO2e sequestered* & *Number of homes protected*

2. Cost Effectiveness Analysis
 • Uses a single metric or index to compare performance
 • *2 lives saved / $1 spent*

3. Multi Criteria Decision Analysis
 • Preference-weighted and normalized benefits
 • *20 points of recreation benefits* (relative units)
Cost-Effectiveness Analysis
BRI Goal: Generate performance metric for comparing alternatives

![Graph showing risk-adjusted benefits and costs for different fire scenarios. The graph compares less cost-effective fires to best-buy fires, indicating that best-buy fires tend to have higher benefits at lower costs.]
BRI goal: Enhance cost-effectiveness of decisions

Simulated program cost (million $)

Practice-based

Performance-based

71 million AEI points

$806 million

Spatial BRI weighting + behavioral responses to policy

Weinberg and Claassen, March 2006 USDA ERS Economic Brief
BRI goal: Provide inclusive view of benefits

Economic Benefit Index

- Existence
- Bequest

urban
- Property protection
- Recreation

rural

Non-Monetized Benefits
Monetized Benefits
Creating BRIs that match end uses

1. Complement
2. Stepping stone
3. Alternative
Example of a complement to valuation

Identify equity concerns

- Complement
 - Ecological Indicator
 - $ \Delta$ Storm surge height
 - BRI
 - Δ People disrupted
 - $\$ Value
 - Property Damage (homes * value)

Stepping Stone

Alternative
Example of a **stepping stone** to valuation

Match to benefit transfer variable

Complement

Stepping Stone

Alternative

- **Ecological Indicator**
 - Δ Fish community

- **BRI – Opt 1**
 - Δ fishing days

- **BRI – Opt 2**
 - Δ Game fish + Angler income

- **Value**
 - WTP for recreational fishing
Example of a **replacement** for valuation

Express relative importance of something that will not be monetized

- Complement
- Stepping Stone
- Alternative

Ecological Indicator
- \(\Delta \text{Habitat} \)

BRI (Rarity)
- <10% of historic extent remains
- Site is 30% of restorable area

- $ Value

12
What elements make a good BRI?

• Metrics come as close as possible to something that people would be willing to pay for
• Represents magnitude of use or intensity of concern
• Reveals meaningful tradeoffs
1. **Quality** is sufficient for users
 - Charismatic birds are present

2. **Complements** - Capital and labor available
 - Piers and boardwalks provide access

3. **Demand** - Users or beneficiaries present / possible
 - Potential birders living in driving distance

4. **Reliability** of the future stream of services
 - Surrounding landscape is protected from development

5. **Scarcity** and substitutability
 - Few alternative birding sites or other sites are congested
Examples + data realities

Use of site quality

Action
Δ Manure management

Ecological Indicator
Δ Index of biotic integrity

BRI
Δ Aquatic system health or resilience

$ Value
WTP for Δ health or resilience (nonuse value)
Examples + data realities

Use of site quality

Action
Δ Manure management

Ecological Indicator
Δ Index of biotic integrity

BRI
Δ Aquatic system health or resilience

$ Value
WTP for Δ health or resilience (nonuse value)
Examples + data realities

Use of site quality

- Action
 - Δ Manure management

- Ecological Indicator
 - Δ Index of biotic integrity

- BRI
 - Δ Nutrient runoff weighted by effect on aquatic invertebrates

US EPA Chesapeake Bay Program
Benefit Relevant Indicator

Complementary Inputs

Co-location of labor and capital

Pollinator Habitat

Not relevant

Relevant if within range

Food Provision

BRI: Area of pollinator-dependent crops within flying distance of pollinator habitat
Benefit Relevant Indicator
Demand

Mazzotta, Wainger et al. 2015 *Ecological Economics*

BRI: Increased game fish density in areas of high freshwater fishing demand
Benefit Relevant Indicator
Scarcity (use value)

Action
△ Restore streams

Ecological Indicator
△ Groundwater recharge

BRI_1
△ Recharge where irrigation used

BRI_2
△ Recharge where irrigate + gw levels declining

Groundwater Level Trend

Columbia Water Center
Benefit Relevant Indicator
Scarcity (Non-Use)

Hudy et al. 2008

Brook Trout Status

Non-use Value for Species of Concern

BRI: \(\Delta \) stream miles suitable for reproduction of trout species of conservation concern

\[\Delta \text{ Riparian buffers} \rightarrow \Delta \text{ Sediment runoff + water temp} \rightarrow \Delta \text{ Habitat quality for reproduction} \]
The current vs future information gap
Future benefits inferred from existing conditions

Western Governors’ Crucial Habitat Assessment Tool

Example from scarcity indicators

Establishing Conservation Priorities

Acres in highest priority categories (1-2) within or adjacent to project

Crucial Habitat Rank

- 1: Most crucial
- 2: Least crucial

Project site
Underpinnings of BRIs

- **Scarcity, Substitutability, Irreplaceability**
 Underlies metric choices
 In general, the scarcer a service is, the more an increase in its quantity is likely to be valued, all else equal

- **Manage data gaps**
 Express importance to people to the extent supported by data and understanding
Aggregating Indicators

Do they capture relative importance of changes?

![Economic Benefit Index](chart)

- Shoreline protection
- Aesthetics
- Commercial fishing
- Recreational fishing
- Recreational boating
Aggregating indicators

Outside of MCDA

- Use expert judgment and/or statistical properties of data to compare and/or combine variables
- Fill gaps when empirical relationships between variables and outcomes are unknown
- Must be used cautiously to avoid creating bias or unintended consequences
Common aggregation approaches

• Normalization
• Standardization
• Simple weighting
 (user or expert judgement rates intensity of concern)
• Multivariate statistical approaches
 (e.g., evaluate “distance” to a user-specified ideal)
Multivariate distance metrics

Initial State

Future State

Anti-Ideal State

Ideal State

Change in environmental status

Management Effectiveness
Pros and cons of multi-metric aggregation

Pros
- Simplifies results
- Reveals synergies and tradeoffs
- Some methods reduce double counting and/or biases (but not eliminate)

Cons
- Methods embed many unexplored assumptions
 - Often ignore thresholds or other non-linearities in benefits
- Some methods double-count benefits
 = opportunity to game stakeholder processes
- Simple mathematical choices can unintentionally bias results
 - E.g., A single high or low outlier values can make moderate changes appear unimportant when normalizing
<table>
<thead>
<tr>
<th>Category</th>
<th>Method</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Best/Worst Quintile</td>
<td>Count the number of variables in the best/worst quintile.</td>
<td>Jones et al., 1997</td>
</tr>
<tr>
<td></td>
<td>Sum</td>
<td>Add the normalized values of all variables.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCA Distance</td>
<td>Transform variables to adjust for correlations, then calculate Euclidean distance from a reference.</td>
<td>Johnson, 1988; Mahalanobis, 1936</td>
</tr>
<tr>
<td>Distance-based</td>
<td>State Space</td>
<td>Adjusts for correlations by calculating the Mahalanobis distance from a reference.</td>
<td>Dubois, 1979; Gatto and Renaldi, 1987; Tran and Duckstein, 2002</td>
</tr>
<tr>
<td></td>
<td>Criticality</td>
<td>Calculates fuzzy distance to a hypothetical "natural" state.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analytical Hierarchy Process (AHP)</td>
<td>Multi-criteria tool that uses decision-maker preferences in the calculations.</td>
<td>Saaty, 1980</td>
</tr>
<tr>
<td>Grouping</td>
<td>Cluster Analysis</td>
<td>Uses a robust partitioning method to group watersheds.</td>
<td>Wickham et al., 1999</td>
</tr>
<tr>
<td></td>
<td>Self-organizing Maps (SOM)</td>
<td>Uses neural networks to group watersheds.</td>
<td>Kohonen, 2001; Tran et al., 2003</td>
</tr>
<tr>
<td>Overlay</td>
<td>Stressor-Resource Overlay</td>
<td>Composite coloring, counts high-stress variable values and high-resource variable values.</td>
<td>Landis and Wiegars, 1997; Jackson et al., 2004</td>
</tr>
<tr>
<td></td>
<td>Overlap</td>
<td>Comparison of two regional maps to highlight differences.</td>
<td></td>
</tr>
<tr>
<td>Matrix</td>
<td>Stressor-Resource Matrix</td>
<td>Computes scores based on correlation values to rate stressors and resources.</td>
<td>Gentile, et al., 1999; Harris et al., 1994; Parkhurst et al., 1997</td>
</tr>
<tr>
<td></td>
<td>Univariate Regression</td>
<td>Computes scores based on regressions of stressors on individual resources.</td>
<td></td>
</tr>
</tbody>
</table>
Other Analytic Details

Spatial extent considerations (servicesheds)

• Does service value decline with distance?
• What is the appropriate range of beneficiaries?
 • Species ranges (e.g., pollinators)
 • Networks & social conditions (e.g., downstream, likely driving distance)
 • Proximity-independent (e.g., climate risk mitigation)
Other Analytic Details

Temporal Analysis Issues

• Benefits are often measured as a stream of services through time
• Benefits may depend on future (unmeasured) conditions
• Not obvious how to discount future BRIs
BRIs fulfill two important needs for ecosystem services assessments

1. Enable lay audiences to clearly connect ecological outcomes to their own well-being
2. Improve analysis of tradeoffs by representing benefits that are not possible or feasible to monetize
Resources

Descriptions of Methods

• Wainger et al. (in press). A proposed ecosystem services analysis framework for the US Army Corps of Engineers. ERDC/EL TR-xx-xxx. Vicksburg, MS: U.S. Army Engineer Research and Development Center

Some example implementations of BRIs

Technical resources

• Scarcity data sources and metric aggregation: Wainger, L., K. Gazenski, E. Murray. (in review). Using scarcity and reliability data to value ecosystem services: assessment of currently available resources and metric aggregation methods. USACE ERDC Technical Report; some info at waingerlab.cbl.umces.edu/ecoscarcity (and Gazenski et al. poster at ACES 2016)
Developing Benefit Relevant Indicators

EXERCISE
BRI Exercise Steps

1. Select a conceptual model

2. Develop BRIs that incorporate at least one of these elements
 - Quality is sufficient
 - Complements - Capital and labor co-located / available
 - Demand - Users or beneficiaries present / possible
 - Reliability of the future stream of services
 - Scarcity and substitutability

3. Produce flow chart summarizing BRIs and connections
Factors to consider
- Qualities relevant to beneficiaries
- Complements - Capital and labor
- Demand - Users or beneficiaries
- Reliability
- Scarcity and substitutability

BRIs (people implicit)
Weight extent of biophysical change by a quality that is relevant to beneficiaries
Examples:
- Area with stable groundwater levels (water supply)
- Number of rare species with enhanced population viability (non-use value of aquatic ecosystem)

BRIs (people explicit)
Weight a biophysical change by the number of affected people or the intensity of concern
Examples:
- Number of private well users with stable groundwater supply