Valuing Ecosystem Services and Disservices Across Heterogeneous Green Spaces

Dr. Christie Klimas, Allison E. Williams, Megan Hoff, Beth Lawrence, Jennifer Thompson, and Dr. James Montgomery
*Department of Environmental Science and Studies, DePaul University, Chicago, IL, 60614, *Department of Natural Resources and the Environment & Center for Environmental Sciences and Engineering, University of Connecticut. cklimas@depaul.edu

Introduction

This study investigates small-scale variability in ecosystem services and disservices that is important for sustainable planning in urban areas (including suburbs surrounding the urban core). We quantified and valued natural capital (tree and soil carbon stocks) ecosystem services (annual tree carbon sequestration and pollutant uptake, and stormwater runoff reduction) and disservices (greenhouse gas emissions and soil soluble reactive phosphorus). Our results have implications for urban planning. Adding or improving ecosystem service provision on small (private or public) urban or suburban lots may benefit from careful consideration of small-scale variability.

Study Site

This map represents the approximately 30-hectare study site. The area includes 55% subdivision (residential), 13% wetland (cattail marsh), 13% prairie, and 16% forest green space. The East and West transects were used to sample tree carbon stocks in trees in the forested area, and soil carbon in the forest, prairie, and cattail marsh. Greenhouse gas (GHG) flux was measured in (from W-E) forest, prairie, wet prairie, and cattail marsh. GHG Well Sample Locations are indicated in blue.

Results

We found similar soil organic carbon across green space types, but spatial heterogeneity in other ecosystem services and disservices. The value of forest tree carbon stock was estimated at approximately $10,000 per hectare. Tree carbon sequestration, and pollutant uptake added benefits of $1,000 per hectare per year. Annual per hectare benefits from tree carbon stock and ecosystem services in the subdivision were each 63% of forest values. Total annual GHG emissions had significant spatial and temporal variation. Soil soluble reactive phosphorus was significantly higher in the wetland than in forest and prairie.

![Map of study site](image)

This map represents the approximately 30-hectare study site. The area includes 55% subdivision (residential), 13% wetland (cattail marsh), 13% prairie, and 16% forest green space.

![Map of study site](image)

Prairie Wolf Slough and Del Mar Woods

Study Areas

- Prairie Wolf Slough
- Del Mar Woods

![Legend](image)

Methods

- Used a field inventory and the i-Tree canopy model to calculate total tree carbon stock.
- Benefits from carbon storage and pollutant uptake (ex. annual CO, NO₂, O₃ removal) were valued within i-Tree using the U.S. EPA’s Environmental Benefits Mapping and Analysis.
- Carbon stock was valued by multiplying carbon stock by $40.03/tonne of CO₂ based on the estimated marginal costs of carbon dioxide emissions.
- Analyzed soil samples for percent soil organic matter using loss on ignition. Calculated soil organic carbon.
- Calculated soil soluble reactive phosphorus.
- Measured CO₂, CH₄, and N₂O fluxes four times in 2013 (June, August, September, October) across a hydrological gradient that encompassed four green space types using vented, non-flow through chambers.
- Used ANOVA to test for differences.

Discussion

- Soil carbon stocks were not significantly different between green space types
 - highest in the forest
 - indicates the value of soil carbon even in human-modified areas.
- Tree carbon stocks, sequestration, and pollutant removal varied spatially with tree cover, but were high in human-modified areas: approximately 63% of the neighboring forest.
- GHG flux from soil had significant spatial and temporal variation as did phosphorus (with higher SRP in the wetland).
- Incorporating knowledge of small-scale variability in ecosystem services and disservices on parcel-size lots (private or public) may improve sustainable planning in urban areas.

![Graph](image)

Analysis of Variance revealed that CO₂ flux varied significantly among months (F= 12.17, p = 3.20e-05) and by green space (F= 12.66, p = 2.36e-05) in 2013. Note that no GHG samples were collected from the cattail marsh in August due to chambers being vandalized.

![Graph](image)

Soil organic carbon per hectare (15 cm depth) for all green space types and accompanying per hectare valuation at different discount rates. Valuation was calculated using the social cost of carbon of $US40.03 to match valuations from i-Tree.

![Table](image)

<table>
<thead>
<tr>
<th>Green space type</th>
<th>Tonnes of Carbon per hectare</th>
<th>Tonnes of CO₂ per hectare</th>
<th>Value of carbon stock at US$40.03 per tonne CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>62</td>
<td>228</td>
<td>$9,126.84</td>
</tr>
<tr>
<td>Prairie</td>
<td>54</td>
<td>198</td>
<td>$7,925.94</td>
</tr>
<tr>
<td>Cattail marsh</td>
<td>60</td>
<td>220</td>
<td>$8,906.60</td>
</tr>
</tbody>
</table>

![Table](image)

Soil organic carbon per hectare (15 cm depth) for all green space types and accompanying per hectare valuation at different discount rates. Valuation was calculated using the social cost of carbon of $US40.03 to match valuations from i-Tree.

Reference