A participatory tool for estimating future impacts on ecosystem services and livelihoods in Torres Strait

JCU: Cass Hunter*, Steve Turton
CSIRO: Tim Skewes, Erin Bohensky, James Butler, Yiheyis Maru
TSRA: Vic McGrath, John Rainbird

* ARC Indigenous post-doctoral researcher
Outline

• Context: Torres Strait
• Research objective
• Participatory workshop process
• Scoring of Ecosystems Goods and Services (EGS) and sensitivity of EGS
 – Cumulative potential impact scoring
• Strengths and limitations of the approach
• Adaptation planning, concluding statement
Torres Strait – Indigenous community with strong connection to land and sea

Key policy stakeholders: Torres Strait Regional Authority

Remoteness: challenge being heard by government
Unique cultural practices, strong leaders, supporting future generations
The Torres Strait is a strategically important region of the Australian coastline.
Research objective

“To provide the tools for effective planning and adaptation”

Focus/requirements:
- Participatory tool for estimating future impacts on ecosystem services and livelihoods
- Developing a system (holistic) approach
- Social-ecological system
- Work closely with key stakeholders (TSRA)
Participatory Workshop - Locals, policy-makers and researchers

Session 1: What are the drivers of change for livelihoods?

Session 2: What are the desired and possible futures?

Session 3: What impact will the “Business as Usual” future have on well-being?

Session 4: What is the resilience of the community today?

Session 5: What are the priority adaptation strategies to build a resilience?

Responding to climate and human stressors – participatory tool for understanding impacts

Cumulative manipulations of multiple threats upon local EGS

Local communities visualising possible futures
Cumulative manipulations of multiple threats upon local EGS

- **System Drivers and Pressures**
 - Human
 - Climate

- **Ecosystem Assets**
 - Populations
 - Forests
 - Agric. land
 - Reefs

- **Ecosystem Goods and Services**
 - Fruit
 - Water
 - Fish
 - Tourism

- **Constituents of Well-being**
 - Income
 - Food
 - Health
 - Culture

- **Sensitivity and Exposure**

- **EGS Potential impact (-1 to +1)**

- **Volume and Value**

- **EGS well-being Importance (%)**

- **Potential impact on well-being (%)**

Building assessment
System Drivers and Pressures

• “Business as usual” pressures

Climate (Scenario A2, medium-high emissions)
 – Temperature, SST
 – Rainfall
 – Sea level rise
 – Acidification

Human (Population growth - current trajectory)
 – Utilisation
 – Land use
 – Pollution

Climate modelling for Torres Strait:
 • Kevin Parnell (JCU)
 • Jack Katzfey (CSIRO)
 • Suppiah Ramasamy (CSIRO)
 • Wayne Rochester (CSIRO)
Ecosystem goods and services

Agricultural
- Banana
- Betel nut
- Cassava
- Chickens
- Coconut
- Garden vegetables
- Mangoes
- Pawpaw
- Pigs (domestic)
- Rice
- Sago
- Sweet potato
- Taro
- Yams

Estuarine
- Barramundi
- Barramundi (aquaculture)
- Crabs (blue)
- Crabs (mud)
- Crocodiles
- Crocodiles (farmed)
- Finfish coastal (trevally, mullet etc)
- Mangrove timber

Forest
- Birds
- Non-timber building material (palms)
- Pigs (wild)
- Rusa deer
- Rusa deer (farming)
- Timber for building/boats/sale
- Wallabies

Freshwater
- Finfish (tilapia, snakehead)
- Prawn (Macrobrachyia)
- Saratoga
- Water (fresh and rainwater)
- Water (ground)

Marine
- Dugong
- Finfish pelagic (queenfish)
- Mackerel
- Pearlshell (aquaculture)
- Pearlshell (goldlip)
- Prawn (banana, tiger)
- Rock lobster
- Sponge (aquaculture)
- Sponge (wild)
- Tourism (fishing)
- Turtles (flatback)
- Turtles (green)
- Turtles (hawksbill)

Reef
- Beche-de-mer
- Clams (Tridacnid)
- Coral lime
- Other molluscs (and from mangrove)
- Reeffish
- Sharks and rays
- Tourism (reef)
- Trochus

55 EGS in total
EGS Values to Well-being

Value of each EGS to the four Constituents of Well-being (CoWBe) scored from (0 – 5)

Reef Fish
- Income: 3
- Social cohesion: 3
- Food security: 4
- Health: 3

Bananas
- Income: 1
- Social cohesion: 2
- Food security: 4
- Health: 3
Sensitivity of EGS to stressors

Sensitivity scored on a scale from:

-1 acutely negatively sensitive with no prospect for natural adaptation
0 acutely positively sensitive and/or full adaptation capacity) to the threat
+1

Literature review
Expert Elicitation

Sensitivity: Degree to which an ecosystem asset is affected by or responsive to a driver/stressor.

Accounts for factors such as tolerance thresholds (some marine species have acute thresholds e.g. corals and other species have a broader threshold e.g. crocodiles).
Matrix representation of components

<table>
<thead>
<tr>
<th>Driver/Stressor</th>
<th>EGS</th>
<th>EGS Potential Impact</th>
<th>Cumulative potential impact</th>
<th>EGS Wellbeing Importance (%)</th>
<th>Potential well-being impact (%)</th>
<th>Overall well-being impact (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EGS Impact (2030) - Masig

EGS well-being importance (%)

EGS Potential impact (-1 to 1)

Climate change
- Temperature increase
- Rainfall change
- Sea level rise
- Ocean acidification

Human population growth
- Exploitation
- Land conversion
- Pollution
Overall potential impact on well-being

Masig Impacts

- Temperature increase
- Rainfall change
- Sea level rise
- Ocean acidification
- Exploitation
- Land conversion
- Pollution
- Climate change

Human population growth

Cumlative Well-being Impact (%)

Sum Across EGS

2030 2060 2100
Limitations of approach

Subjective process
- Scoring of sensitivity
- Inevitable compromises with the breadth of factors

Uncertainty
- Future projections
- System dynamics

Openly discussed through verbal acknowledgement
<table>
<thead>
<tr>
<th>Strengths of approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparent</td>
</tr>
<tr>
<td>• EGS valuing defined by participants in workshop</td>
</tr>
<tr>
<td>• Well-being impact calculated in real-time at workshop</td>
</tr>
<tr>
<td>Relevant</td>
</tr>
<tr>
<td>• Outputs designed for helping formulate strategies</td>
</tr>
<tr>
<td>• “System approach” based on all natural resources used by communities</td>
</tr>
<tr>
<td>Replicable</td>
</tr>
<tr>
<td>• Methods and assumptions well documented</td>
</tr>
<tr>
<td>• Complexity low enough for rapid assessment</td>
</tr>
<tr>
<td>Credible</td>
</tr>
<tr>
<td>• Scrutiny-potential from peer community of stakeholders</td>
</tr>
<tr>
<td>• Outputs that is clear and understood by participants</td>
</tr>
</tbody>
</table>
Co-learning framework

Involvement of locals and policy makers
- Workshops with locals and TSRA

Viewpoints elicited through expert knowledge
- Delphi approach

Valuation of local ecosystem goods and services
- Four constituents of well-being (CoWBe)

Iterative decision-making
- Revising ideas/policies as we continue to learn which outcomes are more likely

Engagement to allow for scrutinising
- Peer-scrutiny
Knowledge Integration

Scientific
- Socio-economic trends
- Downscaled climate projections
- Ecosystem services model
- Livelihood typology
- Ecosystem services impacts
- Adaptation strategy examples

Shared Knowledge
1. Drivers of change for Torres Strait communities and their livelihoods?
2. Desired and possible futures for Torres Strait communities?
3. Impact of business as usual future on human well-being?
4. Adaptive capacity of Torres Strait communities today?
5. Vulnerabilities of Torres Strait communities?
6. Priority adaption strategies to build resilient Torres Strait communities?

Stakeholder knowledge
- Pre-workshop evaluation
- Perceptions of drivers of change
- Future scenarios and thresholds
- Valuing ecosystems services for human well-being
- Adaptive capacity assessments
- Vulnerability assessments
- Adaptation strategies
- Research priorities
- Post-workshop evaluation

Socio-economic trends
Downscaled climate projections
Ecosystem services model
Livelihood typology
Ecosystem services impacts
Adaptation strategy examples
‘No regrets’ adaptation strategies

‘No regrets’ strategies bring benefits under any future conditions of change

Regional workshop

- Marine resource conservation
- Promote tourism and sponge aquaculture
- Climate-change proof terrestrial EGS against sea level rise

Masig community workshop

- Cultural renewal strategy
- Build community financial management capacity, including eco-tourism
- Improve turtle and dugong management to control over-harvesting
- Improve garden food production, including hydroponics
- Meetings to improve community communication
- More coordination among central islands, which face same issue

Capacity for communities and stakeholders to avoid mal-adaptive strategies
Support the development of TSRA community planning
Workshop Evaluation – Masig Community

Question: “What is the greatest challenge that Masig will face in the future”

Before: Coastal erosion most frequent (54%)

After: Loss of cultural values most important (37%) Climate change increased to 27%

Question: “Is Masig resilient to future change”

Before: 62% agreed 38% didn’t know

After: 91% agreed 9% didn’t know

Workshop process Broaden participants perceptions Community’s views of the future
Building "query" platform

Why:
Is it relevant?

When:
Should we be preparing?

Alternatives:
Is there different options?

Who:
Is responsible?

What:
Is the impact?

Bringing together of stakeholders should not be undervalued and is empowering for locals to allow their voice to be heard by policy makers
Conclusion – Community benefits

• Empowering locals through accommodating local community social and cultural values
• Set the platform for effective adaptation planning
 – Interactions between locals, policy makers, and researchers
 – Uptake: Relevant information that locals find useful to sustaining their livelihoods
 – Create/trial innovative ways to increase adaptative capacity

• Build deeper linkages and conversations – guide the way forward
Thanks - ESSO

Acknowledgments – thanks to workshop participants