Show Me the Service: Scientific Trade-Offs In Documenting the Services in A Payment for Environmental Services Program

Patrick J. Bohlen
(Sanjay Shukla, Sarah Lynch, Len Shabman, Hilary Swain, Benita Whalen, Betsey Boughton)
Lake Okeechobee

P load reduction targets

- Average 1974-2012
- TMDL Target--2015
The Goal of FRESP

- Create a Payment for Environmental Services program for **documented** increases in:
 - Water retention
 - P retention

- That is:
 - Profitable to ranchers, cost-effective for tax-payers
 - Feasible to administer
 - Compliments existing programs
 - Based on credible methods for documenting services
Simple concept

- Without WMA
- With WMA—Water Management Alternative

P load per year vs. Year (over contract life)
Dealing with Uncertainty

- PES programs require assurance on environmental service provided, but...
 - ecological systems are complex, nonlinear, and strongly stochastic
 - predictions of dynamics is difficult
 - available information is often equivocal

- Distill complexity into simple, clear advice

Sources of Uncertainty

1. Process stochasticity
 - Natural variation and random behavior

2. Observation error
 - Sampling strategy, errors in data collection

3. Model error
 - Estimation and forecasting errors

4. Implementation error
 - System not managed as required
Scientific certainty

Program needs
Nutrient Loads Driven by Runoff Volume
Clear effects

Equivocal effects

Average annual nutrient load (kg ha\(^{-1}\))

Year

structures installed

* *

* *

* *

with water control structures

without water control structures
Reducing Uncertainty

- Review available data
 - often limited or inadequate
- Monitor and collect more data
 - costly to do well
 - develop easily measured proxies
- Improve models
- Clearly specify implementation
Monitoring Data
POTENTIAL WATER RETENTION MODEL
Williamson Cattle Company - Basin 1
Annual Retention

Uncontrolled Discharge (Pre-WMA) and Controlled Discharge (Post-WMA)

Average Annual Retention
(Post - Pre) = 266 ac-ft
Average Annual Discharge (ac-ft)
Pre = 621
Post = 355

Acre-feet

<table>
<thead>
<tr>
<th>Year</th>
<th>Rainfall</th>
<th>Retention - Uncontrolled</th>
<th>Retention - Controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>2,914</td>
<td>2,110</td>
<td>2,465</td>
</tr>
<tr>
<td>2000</td>
<td>1,487</td>
<td>1,365</td>
<td>1,487</td>
</tr>
<tr>
<td>2001</td>
<td>3,014</td>
<td>2,063</td>
<td>2,331</td>
</tr>
<tr>
<td>2002</td>
<td>2,493</td>
<td>1,986</td>
<td>2,249</td>
</tr>
<tr>
<td>2003</td>
<td>2,250</td>
<td>1,983</td>
<td>2,222</td>
</tr>
<tr>
<td>2004</td>
<td>3,299</td>
<td>1,878</td>
<td>2,151</td>
</tr>
<tr>
<td>2005</td>
<td>2,907</td>
<td>2,142</td>
<td>2,494</td>
</tr>
<tr>
<td>2006</td>
<td>2,058</td>
<td>1,783</td>
<td>2,028</td>
</tr>
<tr>
<td>2007</td>
<td>1,922</td>
<td>1,616</td>
<td>1,908</td>
</tr>
<tr>
<td>2008</td>
<td>2,992</td>
<td>2,202</td>
<td>2,451</td>
</tr>
</tbody>
</table>
“Simple” Case: Williamson Cattle Company
250-Acre Wetland With 900 Acre Drainage Area
Hard Case--Buck Island Ranch
3,700 Acre Cascading Pasture Water Retention System
Non-linear, Counterintuitive Results

Increased Board Height

No conclusive evidence for increased water or P retention

2009

Inundated area

2010

Inundated area
Conclusions

- Many environmental services involve complex natural systems with unpredictable behavior.
- PES Programs need tools that can be understood by buyers and sellers of services.
- Science is only half the battle.
- Scientists need to be willing to step outside their comfort zones.
- Monitoring can improve modeling and performance, but resources are often lacking.
“Simple” Case--Lykes Bros. Inc
2,500 Acre Treatment Marsh In Existing Reservoir
Stochasticity