

CLIMATE ACTION RESERVE GHG Emission Reduction Quantification on Farms and Ranches: The Offset Registry Perspective

Teresa Lang, Senior Policy Manager

Climate Action Reserve

- Largest, most trusted carbon offset registry in North America
 - 85+ Million offset credits issued
 - Approximately 400+ projects in our system, including 170+ ARB Compliance Offset Projects
- Collaborative and Inclusive
 - Work with industry, government, environmental, and academic sectors in open, transparent workgroups when developing protocols
 - Aim to create protocols that are robust, rigorous, accurate, usable, and standardized

CLIMATE ACTION RESERVE 6 Forest

- Grassland
- (1) Landfill
- Livestock
- 🛞 Mine Methane
- Nitric Acid Production
- Organic Waste Composting
- Organic Waste Digestion
- Ozone Depleting Substances
- F Forest ARB
- Livestock ARB
- Mine Methane ARB
- 0 Ozone Depleting Substances ARB
- Listed, Registered & Completed Projects as of October 3, 2016

MM

0

0

1

G

G

0

0

F

0

0

00

Ć

0

T

00

F

What is a (Carbon) Offset?

CLIMATE ACTION RESERVE

- Voluntary emission reductions in sectors without GHG regulation
- Buyers seek to offset their own emissions
 - Driven by both voluntary and compliance purposes
 - 1 credit = 1metric ton CO₂e
 - Focus on GHG reductions
 - Other positive ancillary co-benefits

Overview of Registry and Agriculture Protocol Landscape

- 3 Registries each with their own protocols
 - CAR ("the Reserve"), ACR, VCS
- 1 Compliance market (CA) with its own protocols
- 19 total agricultural protocols for the voluntary market across the registries, covering:
 - Livestock operations (manure management)
 - Avoided conversion of grasslands,
 - Rice cultivation management,
 - Nitrogen fertilizer management ("nutrient management")
 - Organic waste management and application to grazed grasslands

Offset quality

Quantifiable (technically feasible)

- As the complexity of the system impacted by the project activity increases, associated increase in
 - the cost and efforts required to measure and quantify the GHG benefits
 - uncertainty of quantification method
- Quantification methodologies must be
 - Conservative
 - Able to trace each offset credit to a specific activity and facility
 - Measurement & quantification approaches must be accurate & reliable

Quantifiable (financially feasible)

- Critical to balance accuracy with cost
 - Must be financially feasible to measure and quantify the GHG benefits with a level of certainty that is acceptable for the creation of GHG offsets
 - Soil samples: increase accuracy but also increases cost. Use of remote sensing as an alternative in Grasslands
 - Meters for methane measurements: costly but necessary
 - The cost of measuring and reporting GHG reductions must be some amount less than the potential revenue from the sale of the credits.
- Potential volume of GHG reductions influences the unit cost of creating offsets
 - Higher volume projects likely have a lower unit cost; justifies additional quantification expenses

Verifiable

- Must be technically and financially feasible for a third party technical expert (verifier) to audit project activities and quantification
- Verifiers must be able to reach reasonable assurance that the project activity and quantification were in conformance with the requirements of the project protocol.
- Reserve (and others) have been focused on improving guidance and flexibility for verification of projects
 - Seeking to develop protocols which rely on remote sensing, minimal level of measurements; multiple documents used to triangulate/prove certain activities

Challenges

- Data collection issues:
 - Sufficient documentation and data from grower
 - Some data already collected by other agencies (ie. FSA)
 - Attempt to be flexible and creative in triangulating evidence of a given project activity
 - Scientific data collection / paired field experiments
 - Growing body of data collected on GHGs from agriculture, but need paired tests to compare the effect of the "project activity" in the baseline and project
 - No single data repository (some sectors have good metaanalyses of data but rarely comprehensive)

Challenges

• Modeling vs. Measuring

- Models too have varying degrees of complexity, from DNDC and COMETfarm (Tier 3) to a simplified emission factor (Tier 2) approach
- More complex models have more significant data inputs. Model results can only be as accurate as the inputs to the model (input uncertainty)
 - Measurement is typically one option for inputs, but can be costly. Must weigh whether the measurement is the best/only possible input, or whether other inputs (i.e. remote sensing) can suffice
 - Rarely is measurement an option for the emission reductions themselves (ie. gas spectrometer)
- The uncertainty of the model's ability to estimate GHG emissions must also be assessed (structural uncertainty) through calibration and validation
 - This process also requires independent, robust data sets

High Quality Credits

- Require a robust, scientifically sound quantification methodology, which meets key offset criteria
- Verified (by 3rd party auditor)
- Premium paid for
 - Credits used for compliance markets
 - "Charismatic offsets" with significant co-benefits.
 - For example:
 - Nitrogen management projects can improve water quality, reduce hypoxia
 - Grasslands, rice fields, forests provide important habitat
 - Co-benefits not necessarily the focus for a carbon offset project but can be a key factor for buyer/price

Teresa Lang <u>tlang@climateactionreserve.org</u> (213) 891- 6932

www.climateactionreserve.org