

Probabilistic Integrated Resource Assessment Tool with Ecosystem Services: PIRATES

Monica A. Dorning
Geosciences and Environmental Change Science Center

Probabilistic Integrated Resource

Assessment Tool with Ecosystem Services:

PIRATES

Crew members

GECSC

Jay E. Diffendorfer

Darius J. Semmens

Kenneth J. Bagstad

Todd J. Hawbaker

Steven L. Garman (BLM)

CERSC

Cici Martinez

Seth Haines

SDC

Karen Jenni

PIRATES Conceptual Model

Integrated probabilistic modeling approach

Assess how future landscape changes may affect wildlife and ecosystem services

Account for uncertainty throughout the process

ACES 201

Test Case: Southwest Wyoming

Oil and gas development

Wildlife and Ecosystem Services

Probability of change

Haines et al. 2013. A framework for quantitative assessment of impacts related to energy and mineral resource development. Natural Resources Research 23: 3-17

Probability of change

Petroleum Systems and Geologic
Assessment of Oil and Gas in the
Southwestern Wyoming Province,
Wyoming, Colorado and Utah
By: U.S. Geological Survey
Southwestern Wyoming Province
Assessment Team

Date: 2005

Citation: DDS 69-D

Energy footprint simulator

Placement of well pads and associated roads across the landscape

Quantity: USGS assessments Location: relatively unknown

Multiple stochastic simulations implemented

Simulation results for a single model run distributing 2000 wells

S. Garman. The Atlantic Rim Project Area, WY

Impact assessments

Haines et al. 2013. A framework for quantitative assessment of impacts related to energy and mineral resource development. Natural Resources Research 23: 3-17

Approach 2: Meta-model

Pygmy rabbit habitat

PIRATES Scenarios: Assessing impacts of policy

The Sage-Grouse Umbrella: How do sage-grouse core area policies influence other species of conservation concern?

Use PIRATES framework to project how other species may be impacted by oil and gas development 1) with and 2) without the core area policy in place

Gamo et al. 2013. Greater Sage-Grouse in Wyoming: an umbrella species for sagebrush dependent wildlife. The Wildlife Professional

Test results – single AU

ES Endpoints

Challenges assessing ES impacts in SW Wyoming

1. Data and empirical relationships

2. Impacts over time

Accounting for time: Well lifespans

Empirical impacts to relevant ES

Oil and gas development influences big-game hunting in Wyoming Dorning et al. In press. Journal of Wildlife Management

ACES 2016 M. Dorning 20

2.2

2.5

4

The road ahead

Space: Costs and benefits vary across local to global spatial scales

Time: Resource extraction and impacts vary over time. For example, energy production occurs over short time scales while impacts to sagebrush ecosystems can last decades

Uncertainty: Summarizing and communicating

Data gaps: Data are needed that document the impacts of development at broad scales

