Crucial Elements of a Reporting System for Ecosystem Service Values

Results of CFARE Project — Valuing the Ecosystem Services from Farms and Forests

LISA A. WAINGER, PHD

UNIVERSITY OF MARYLAND CENTER FOR ENVIRONMENTAL SCIENCE

SOLOMONS, MD

WAINGER@UMCES.EDU

ACES, DECEMBER 8, 2016

Support provided by the of Council on Food, Agriculture, and Resource Economics (C-FARE) in collaboration with the USDA Office of Environmental Markets

Background

- ➤ Project initiated by USDA Office of Ecosystem Markets (OEM) and Council on Food, Agriculture, and Resource Economics (C-FARE)
- > Collaboration among many governmental and academic researchers
- Address question: How well can the benefits of USDA programs be measured with existing data, tools and information?
 - OProof of concept
 - ONo primary valuation studies
- Chose three policy-relevant ecosystem service areas: carbon, pollination, water quality
- ► Intended audience USDA analyst or manager

Elements of a systematic approach

- 1. Define terms but retain some flexibility
- 2. Interdisciplinary teams
 - a. Identify credible data and methods
 - b. Develop cause-and-effect conceptual models and
- 3. Monetize benefits where appropriate
- 4. Use decision-relevant benefit indicators to complement or serve as alternatives to monetary values
- 5. Demonstrate sensitivities to assumptions and sources of error
- 6. Identify opportunities to broaden set of services and improve estimates

1. Define terms but retain flexibility

- Specificity promotes clarity about value
 - When we measure ecosystem services...
 - Are beneficiaries specified? quantified?
 - Is strength of concern represented?

1. Define terms but retain flexibility Example - flexible definitions of value promote custom fit

- Most robust to value *final* ecosystem services but may diverge from program goals
 - Residential property values easier to measure than human health benefits
- Retaining *intermediate* services as benefit measures may provide a better match when data or information is limiting
 - Water quality outcomes might be used as leading indicators of health risks from harmful algae in place of monetary values

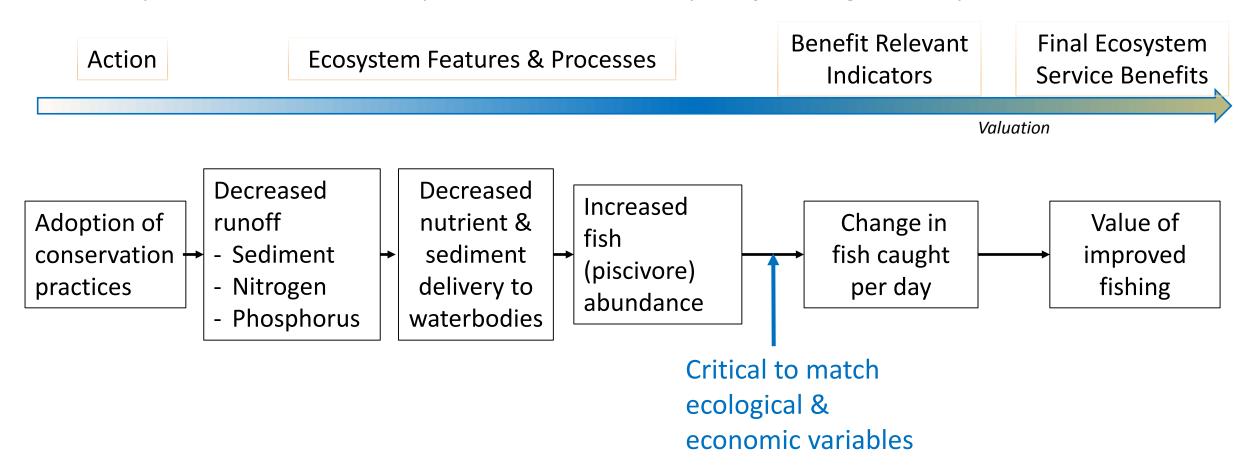
2a. Interdisciplinary teams identify credible data & methods

Credibility varies

- By ecosystem service (due to availability of models, valuation techniques that can be used)
- By data type (length of the cause and effect chain)
- By geographic area
- By eye of the beholder
- Need for credibility varies by decision context
 - Rough monetary estimates or non-monetary indicators might be sufficient for demonstrating types of program benefits
 - Precise values might be needed to inform cost-effectiveness of alternatives

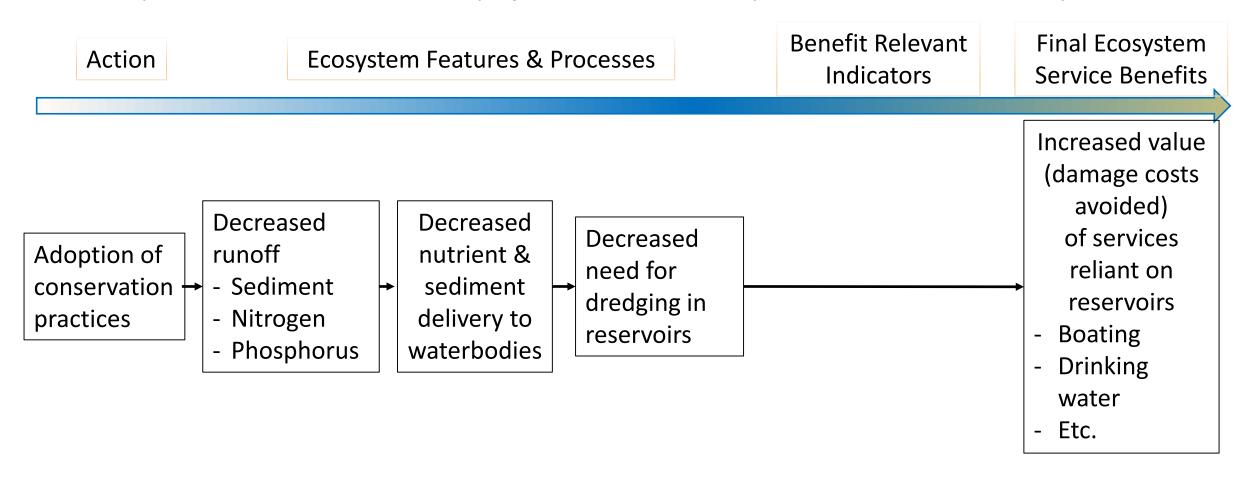
2a. Interdisciplinary teams identify credible data & methods Credibility issues that arose in project

➤ Source data credibility

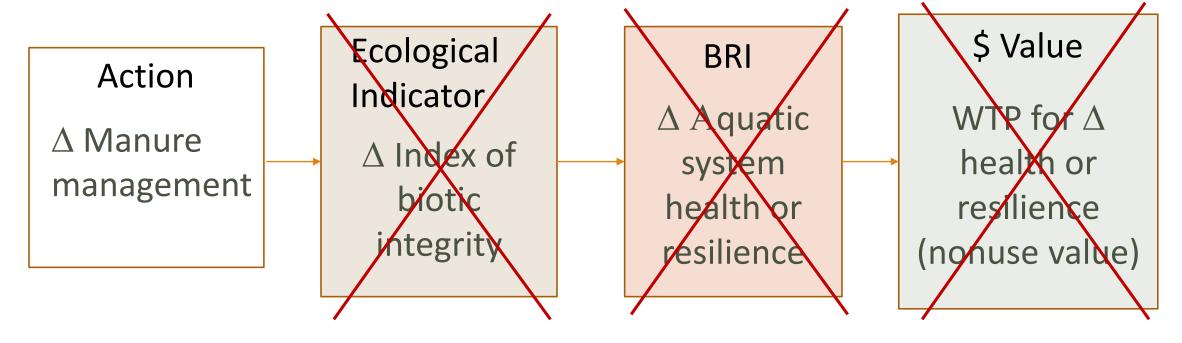

- Can ecosystem changes be reasonably attributed to actions being evaluated?
- Are data and model results from studies outside the peer-reviewed literature acceptable?

Method credibility

- Unit value benefit transfer What is sufficiently similar context for transfer?
- Are detailed cause and effect models required?

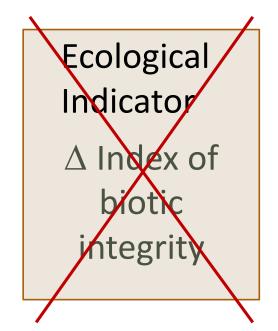

2b+3. Conceptual models used to choose what to monetize

Conceptual model with process detail - Sportfishing example


3. Monetize where appropriate

Conceptual model with simplified relationships - Reservoir example

4. Use BRIs to complement or provide alternative to monetary values


Ecosystem Service: Non-use values of enhanced ecosystem health

4. Use BRIs to complement or provide alternative to monetary values

Action

∆ Manuremanagement

BRI

△ Nutrient
delivery weighted by
potential for
ameliorating
harm

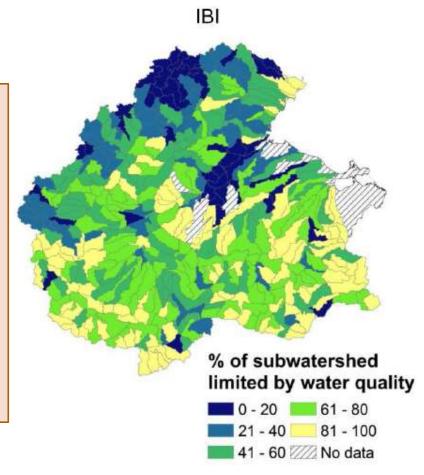


Figure 6 in Keitzer et al. 2016

Quantifying the Potential Water Quality Benefits of Agricultural Conservation Practices for Stream Fish Conservation in the Western Lake Erie Basin

5. Demonstrate sensitivities to assumptions

Example - Sportfishing values highly sensitive to uncertain inputs

	Total fishing days (millions)	Baseline walleye catch (fish/day)	Baseline white bass catch (fish/day)	% Increase in fish	% Increase in fish caught	Total benefits (M 2015\$)
Baseline 50% fewer fishing days	2.84 1.42	1.24 1.24	6.16 6.16	42% 42%	42% 42%	\$22 \$11
50% of piscivore increase caught	2.84	1.24	6.16	42%	21%	\$12
catch rate + 2	2.84	3.24	8.16	42%	42%	\$21

6. Identify opportunities to improve

- > Broaden set of services that can be quantified
 - Strategic investments in data collection and models to <u>isolate effects</u> of conservation practices from background trends
 - Improve data on <u>how practices affect outcomes</u> that can be valued (requires collaboration among disciplines)
- >Improve accuracy in benefit transfer
 - More gap-filling valuation studies
 - Develop tools that improve ability to transfer values based on data (e.g., meta-regression models)
 - Models of changes in demand useful for benefit transfer

Conclusions *Applying an ecosystem service valuation framework*

- Interdisciplinary collaboration enhances credibility of all methods
- 2. Many services can be monetized, but
 - All that were evaluated in case study required bold assumptions
 - Values may not align well with agency goals
- 3. Non-monetary benefit indicators are needed to provide a more complete picture of benefits
- Monetization promotes consistency but all dollar values are not necessarily readily aggregated
 - Easy to generate overlapping benefits by choosing expedient methods
 - Values can be non-comparable due to divergent definitions of value