Chesapeake Bay Stream and Floodplain Ecosystem Services

Emily Pindilli, Dianna Hogan, Krissy Hopkins, Collin Lawrence, Fabiano Franco, and Stephanie Gordon

> A Community on Ecosystem Services December 2016

> > U.S. Department of the Interior U.S. Geological Survey

Introduction

Chesapeake Bay Pilot

- Restoration and protection a priority for stakeholders
- High development pressure

Motivation

 Lack of information on ES and values applicable to local scale

Project Goal

 Provide ES information on streams and floodplains at scale useful to inform decision-making

Floodplain Ecosystem Services

Capacity of floodplain to retain sediment, nutrients, and flood waters provides critical ecosystem services to local and downstream communities

Ecosystem Services of Interest

Nutrient/Sediment Retention

Flood Attenuation

Carbon Sequestration

Project Approach

biophysical production of services

Lidar Mapping

Sediment and Nutrient Retention Linking Functions to Services

Ecosystem Function

Floodplains retain sediment and nutrients

Loads of sediment and nutrients are reduced

Improved water quality

Ecosystem Service

Opportunity to:

- view the
- environment
- to swim, wade, boat
- catch fish

Quantifying Sediment and Nutrient Retention

- Field estimates of sediment, nitrogen, & phosphorus
 - Bank erosion
 - Floodplain deposition
 - Net flux

 Stream reach predictions of flux of sediment, nitrogen, & phosphorus

Courtesy of Greg Noe

Sediment and Nutrient Retention Translating Services to Values

≥USGS

Replacement Cost Method

- Estimating consumer surplus is *currently intractable*
- As a proxy, assessing replacement costs of nutrient and sediment retention services provided by floodplains

$$V_e = \sum_i R_i * P_i$$

Photo courtesy of DC Water

Difficult Run Preliminary Results

Cost per pound of total nitrogen removed*

Nitrogen concentration achieved

*These data are preliminary and are subject to revision. They are being provided to meet the need for timely 'best science' information. The assessment is provided on the condition that neither the U.S. Geological Survey nor the United States Government may be held liable for any damages resulting from the authorized or unauthorized use of the assessment.

Flood Attenuation Linking Functions to Services

Ecosystem Function

Floodplains store water during precipitation events

Stream peak flows are reduced

Ecosystem Service

Adjacent community flooding reduced

Quantifying Flood Mitigation

Estimate inundation for baseline (*w/ floodplain*) and counterfactual scenarios (*w/o floodplain*) using GIS Flood Tool¹

h = 8.2 ft

h = 22.2 ft

¹Verdin et al., (2016). A software tool for flood inundation mapping. USGS Report 2016-1038. Basemap imagery from ESRI and Digital Globe data

Flood Attenuation Translating Services to Values

Method Development: Translating flood attenuation to services and economic values

Link water storage to flood attenuation

Link flood attenuation to avoided damages

Estimating Flood Damages Avoided

Depth-Damage curves

Developed by FEMA using insurance claims

Figure from FEMA (2013). *Multi-hazard loss estimation methodology, Flood Model, Technical Manual.* Basemap imagery from ESRI and Digital Globe data

Carbon Sequestration Linking Functions to Services

Ecosystem Function

Floodplains store carbon in soils and biomass

Lower carbon inputs to the atmosphere

Lower atmospheric carbon

Ecosystem Service

Reduced climate change

Determining Floodplain Carbon Flux

Using literature values to estimate carbon flux

Carbon Sequestration Translating Services to Values

Select relevant floodplain areas

Extract Carbon flux from geospatial datasets

Social Cost of Carbon \$43.32 per ton of CO_{2eq} per year

Photos courtesy of Chesapeake Bay Foundation

Research Significance

- ES info provides decision-makers with critical data:
 - Nutrient and sediment retention capacity of floodplains
 - Flood mitigation capacity of floodplains
 - At local and watershed wide scales
 - Human impacts and values to understand tradeoffs
- Analysis may support targeting of conservation and/or restoration
- Research continues in Chesapeake Bay, new work underway in Delaware River Watershed
 - Grant from William Penn Foundation (FY17-19)
 - Refine USGS Toolkit

Questions??

DIFFICULT RUN

STREES VAL