

Innovation • Collaboration • Inspiration

Thinking Together to Inspire

Environmental Market Programs for Pollutant Reductions

 This material is based upon work supported by the Natural Resources Conservation Service, U.S. Department of Agriculture, under number 69-3A75-12-177. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the U.S. Department of Agriculture.

Project Background

Who: Moody County Conservation District

What: Evaluated environmental market approaches

How:

- Establish a Technical Review Team
- Benchmark salient programs
- Assess pollutant suitability
- Assess financial attractiveness
- Develop market rules and infrastructure
- Test program framework
- Public outreach

Project Area

Environmental Markets Considered

- Water Quality Trading
- Payment for Ecosystem Services (PES)

PES program -- A buyer pays another entity to provide a new environmental benefit

- Municipality Examples:
- Reduce nitrates in wellhead protection areas for drinking water supply
- Reduce stream peak flows and/or increase the base flows
- Reduce water quality parameter loadings upstream of river reaches flowing through the city
- Basic PES program currently in operation

Pollutant Suitability Assessment

- Total Suspended Solids
- E. coli bacteria A pathogen, and used as an indicator of other pathogens
- Are there adequate load reduction drivers?
- Consideration of persistence throughout different flow regimes
- Determination of supply to demand ratios
- Equivalent water quality parameter forms?

Big Sioux River and E. coli Persistence

Bacteria Contributions to BS 11 During Exceedances

Suitability Findings

- Cost effective, pennies on the dollar
- Environmental markets alone are not sufficient
- Agricultural/urban sources are not fully comparable regarding forms of pathogens
- E. coli bacteria have a limited persistence
- The river diversion structure increases complexity
 - Upper BS-10 and the unnamed tributary to Skunk Creek have limited potential for offsetting local stormwater loading with agricultural generated credits
 - In key reaches, bacteria is not completely flushed away
- Inadequate load reduction driver for total suspended solids

Enhanced Payment for Ecosystem Services Options

- Public transparency
- Third party checks and balances
- Application and/or request for projects windows (e.g., open windows, reverse auctions, etc.)
- Cost-effective site selection

Program transparency and third party oversight strengthens support when requesting longer permit compliance schedules and/or a variance

Pilot Testing

- Three landowners/livestock producers in the Skunk Creek Watershed have agreed to test the protocols
 - One livestock feeding operation
 - Two livestock grazing operations

Pilot Test Conservation Measures

Seasonal Riparian Area Management (SRAM)
(Before) (After)

Pilot Test Conservation Measures

AFO Heavy Use Lots; Bacteria in Runoff Loads Streams During Large Events (Before)

Move Cattle to Remote, Monoslope Barns Sites; Preventing Runoff (After)

SRAM Monitoring

SRAM Monitoring

Water Quality monitoring results

E. Coli

Innovation • Collaboration • Inspiration

Thinking Together to Inspire