REPRESENTATION OF REPTILE
BIODIVERSITY AND ECOSYSTEM
SERVICES WITHIN THE PROTECTED
AREAS OF THE CONTERMINOUS
UNITED STATES

Kenneth G. Boykin¹, William G. Kepner², Alexa J. McKerrow³, Anne C. Neale², and Kevin J. Gergely³

¹Department of Fish, Wildlife, and Conservation Ecology, New Mexico State University, and USGS New Mexico Cooperative Fish and Wildlife Research Unit, Las Cruces, New Mexico, USA

² U.S. Environmental Protection Agency, Office of Research and Development, Las Vegas, Nevada, USA

³ United State Geological Survey, Raleigh, North Carolina, USA

⁴ U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, USA

⁵ U.S. Geological Survey, Gap Analysis Program, Boise, Idaho, USA

A Community on Ecosystem Services December 8, 2016 Jacksonville, FL

EnviroAtlas -- Nature's Benefits Categories

- Clean Air
- Clean & Plentiful Water
- Biodiversity Conservation
- Natural Hazard Mitigation
- Climate Stabilization
- Food, Fiber & Materials
- Recreation, Culture & Aesthetics

Drivers of change

Gap Analysis Products and Data Sources

- Land Cover
 - 583 classes
 - 556 Natural
 - 27 Land use
- Species Distribution Models
 - Knowledge based/expert based
 - Wildlife Habitat Relationships
 - Habitat based
 - Top down general to specific
 - 322 Reptile Models
- Protected Areas Database

http://gapanalysis.usgs.gov/

National PADUS

Approach

Status
Status 1 & 2 – Protected Lands
Status 3 – Multiple Use Lands
Status 4 and No Status – Other
lands

National Land Cover Data Set

National Reptile Data Sets

Stakeholders

Models

Models

Biodiversity Areas

Analyze

areas of species richness of each biodiversity metric by Gap Status areas

Biodiversity Metrics derived from GAP Deductive Habitat

Selected Metrics

Analysis

- Species Richness
- Aiche Biodiversity (17% protected area)

Reptile Ecosystem Services

All Reptiles Lizards **Snakes Turtles** G1, G2, G3 **IUCN** Threatened and Endangered

All Reptiles

Lizards

Snakes

Turtles

G1, G2, G3 Species

IUCN Species

IUCN listed Species Richness by GAP Protection Status

PARC Species

T & E Species

Threatened and Endangered

Threatened and Endangered Species Richness by GAP Protection Status

Other Metrics

Rare - Area modeled Rare - Number of HUCs

Venomous Reptiles

Richness by Land Cover

Species Richness by Land Cover

legis I Repties	DM. Main STD	7/13 1/10	Westle Media Militari Militari Militari	Grantia Scientia 17.60 1.46	Seni. Swet 1910 11:01	Hek Morene Vigention	Aiguete Vepriator	Sparse Versaler Rock Versaler Rock Versaler Vers	Apresident Veptates	Introduced & Sent Natural Variation	Recently Districted or Modified	Open	Developer & Other
	Meg.	21.0E 500	23.00 Taxo	40.00 1.00	12.00	0.64 17.06	78.00 78.00	835	878 475	8.01 4.17	10.50	Nation 142	Homan Ur
	Mias Sin Naz	135 640 136	3 85 1 54 2 8 50	440 245 III 00	100 540 520	100 132 246	140 140 120	7630 1830 534	48 90 7.00 1.00	50/30 10/30	5.28 49.00 11.00	4.34 50:09 6.00	4.72 49.06
ili.	Mar Meet 170	2 06 637 525	3.00 5.01 2.03	100 516 640	34M 135 36E	100 100 100	540 180	1.00 18:00 1.00	0.95 (E.00	2.91 1.27 17.00	236 236 31.00	177	\$10 2 (1 1.29
-	Maria Maria Maria Maria	10.00 1.00 1.00 1.00 1.00	10.00 100 210 200 200	IIII III IC III	11 00 120 121 121	146 I250 100 100	7.50 7.27 20.00 1.00 6.22	7.67 3.32 1840 104s	150 634 142 11.00 610	5 de 6 de 2 7d 13 de	100 100 400 100	3.00 3.00 2.91 3.11	1500 150 670 338
ics	Mig. Maria STD	6:00 5:70 2:20	130 130 131 131	1500 150 110	12:00 1:00 1:41	915 100 100	128 1300 140	1.85 2.11 17.00	117 0:00 15:00	100 120 131	11.00 1.10 1.10 1.00	33.00 1.00 4.02	35.20 7.02 1.28
Nac.	是是是是是	600 500 104 176 500	in in in	E-11 E-80 1-80 1-25 E-85	10 10 14	110 130 280 180 180	234 156 430 340	1.00 3.20 0.10 30.00 1.00	1.00 1.15 9.38 1.00	14:00 1:00 1:01 0:26	15 M 1 OD 1 40 2 Mg	2.41 38.06 5.00 4.03	15.00 15.00 1.00
(IC)E)	March March Mill Mill Mill	100 289 176	100 142 171	140 140 140	100 100 100	130 130 130	120 130 200 100	118 118 986	136 127 939	700 138 100 019	736 130 132	1.12 1.00 6.00	1.48 7.00 1.00
lare form	Sign Store 1170 Value	130	100 100 130 133	146 146 146 141	10	1 81 1 80 1 80 1 80 1 80	110 530 180 180	151 134 049 800	100 100 117 039	50s 10s 10s 10s	9 (3 3 (0) 1 (0) 1 (1)	321 342 500 100	1.00 0.35 3.00 1.00
	<u>.</u>		191	10	120	121 245 146	131 131 150 150	1 00 2 16 1 15 6 00 1 m	100 100 100 100 100 100	100 100 138 038 410 159	0-13 1-20 1-30 1-32 1-32 0-3-7 1-30 1-30	1 m 1 dt 1 dt 1 dt 1 dt 1 dt 1 dt	1.08 0.25 1.00 1.00 1.75 1.77

Conclusions

- Metrics suggest current Protected Lands system are not sufficient;
 - For all metrics
- Metrics suggest current Status 1-3 Lands are sufficient
 - All Reptiles, Lizards, Snakes, G1G2G3 and PARC
 - Marginally Turtles and IUCN
- Other Lands (not Status 1,2, and 3) are sufficient

Conclusions

- Semi-Desert has the most richness
- Forest/Woodlands and Shrubs/Grasslands next
- Turtles are high in aquatics
- Relatively high richness is modified lands
 - Snakes
- Reptiles are an interesting ES model because:
 - Understudied
 - General fear and loathing
- •Ecosystem Services can play an important part in Conservation

Reptile Ecosystem Services

Benefit Category EnviroAtlas	Function, Service, Goods	Description				
Food, fuel and materials	Food	Turtles and tortoises are eaten across the world. Alligators. Snakes and lizards in some degree				
materiale	Medicine	Anti-venom and blood thinning drugs. melanoma (Gila monster; Hailey et al. 2012), blood thinning (snakes), cardiovascular disease (snakes), pain (snakes), diabetes (Gila monster), and Alzheimer's disease (Gila monster (Lewis and Garcia 2003)				
	Medicine	Traditional medicinal ingredients in Brazil from Alves et al 2009				
	Clothing	Boots, belts, hats				
Recreation, culture, aesthetics	Pet Trade	Reptile collectors and breeders				
Natural hazard mitigation	Disease transmission	Regulating disease carrying rodents. Ostfield and Holt (2004) suggest the complexities of this are "largely untested"				
	Pest outbreaks	Regulating rodent populations				
Recreation, culture, aesthetics	Awareness	Poison/venomous Snake hunting in OK				
accinotico	Art	Art/books/mythology, music -				
	Regulatory	Federally and state listed species are of concern to agencies and organizations.				
	Religious	Used in various religious ceremonies				
Biodiversity Conservation	Food web	Community structure and effect on trophic cascade				
2220. 13	Altering physical habitats	Ecosystem engineering such as tortoise burrows				
	Cycling nutrients	Decomposition and primary production				

Acknowledgements

Southwest Stakeholders

Southeast Stakeholders

National Stakeholders

Other stakeholders representing:

- BLM
- NRCS
- NMDGF
- DoD
- NGOs

USGS SWReGAP Project
(http://fws-nmcfwru.nmsu.edu/swregap/)

USGS SEGAP Project (http://www.basic.ncsu.edu/segap/)

Steve Williams, Matt Rubino, Nathan Tarr

EPA EnviroAtlas Team (https://www.epa.gov/enviroatlas/)

Megan Mehaffey, Megan Culler, Jessica Daniels

National Gap Analysis Program (http://gapanalysis.usgs.gov/)

Jocelyn Aycrigg, Jeff Lonneker, Thomas Laxon

Contact Information

Kenneth G. Boykin
Center for Applied Spatial Ecology,
New Mexico State University,
New Mexico Cooperative Fish and Wildlife Research Unit
Las Cruces, NM

kboykin@nmsu.edu

William G. Kepner, Las Vegas NV Anne C. Neale, Research Triangle Park, NC USEPA, Office of Research and Development

kepner.william@epa.gov neale.anne@epa.gov

Alexa McKerrow, Raleigh, NC Kevin J. Gergely, Boise ID USGS National Gap Analysis Program

http://case.nmsu.edu/

https://www.epa.gov/enviroatlas/

http://gapanalysis.usgs.gov/

Rare Species

Rare (modeled habitat based) Species Richness by GAP Protection Status

Habitat Modeling: Deductive vs. Inductive

- Deductive (GAP Standard)
 - Knowledge based/expert based
 - Habitat based
 - Top down- general to specific

- Inductive (Maximum Entropy)
 - Species occurrence based
 - Bottom up- specific to general
- Merge the two types
- Ensemble models

Suitable Habitat

Suitable Habitat

General Conclusions

- Process allows many perspectives;
- Responsive to needs of users;
- National level with moderate scale;
- Establish common sense *indicators of ES* for end-user and decision maker needs, e.g.
 - Landscape Conservation Cooperatives
 - State Wildlife Action Plans
 - Potentially also for IPBES, TEEB, GEO BON, DIVERSITAS, etc.

Modeling Process

Model Variables

- Land cover
- Patch Size
- Edge
- Forest Interior
- Canopy Cover
- Hydrography
 - Flowing water
 - Open/Standing Water
 - Wet Vegetation
- Soils
- Human Impacts/Road Density
- Elevation
- Land Forms

