
National Assessment of Ecosystem Carbon Sequestration and Greenhouse Gas Fluxes

Bradley Reed, US Geological Survey reed@usgs.gov

Energy Independence and Security Act § 712 calls for DOI to:

- Determine the current stocks and fluxes of ecosystem carbon and other greenhouse gases (methane and nitrous oxide)
- National assessment covering all major terrestrial and aquatic ecosystems
- Estimate potential capacity of ecosystems to increase carbon sequestration
- Consider policy applications (e.g. adaptation and mitigation applications)
- Consider effects of climate change and other controlling processes such as land use and ecosystem disturbances
- Consult with DOI bureaus and other organizations

Timeline of Assessment Reports

- 2010 published Methodology document
- 2011 assessment for Great Plains
- 2012 assessment for Western US
- 2014 assessment for Eastern US
- 2016 assessments for Alaska

Methodology 2011 Great Plains 2011 Western U.S. 2012Eastern U.S. 2014 Alaska 2016

Baseline and Projections

- 2001-2005 are the Baseline years for carbon reporting
- Perform land change and Carbon projections to 2050, based on 3 climate models (with a range of temperature and precipitation trends) and 3 IPCC Special Report on Emissions Scenarios (SRES) storylines:
 - A1B rapid economic growth, high technology innovation
 - A2 moderate economic growth, high population increase
 - B1 moderate economic growth, environmental sustainability

Unique Use of Remote Sensing

National Greenhouse Gas Inventory is largely based on USDA's Forest Inventory and Analysis (FIA) and National Resource Inventory (NRI) *in situ* observations. The USGS assessment uses FIA and NRI data and supplements significantly with remote sensing data:

Landsat

- Land cover (National Land Cover Database)
- Land cover change (NLCD and Vegetation Change Tracker)
- Fires (Monitoring Trends in Burn Severity)

- Net primary production
- Irrigation

Extensive Use of Models

- A series of models were used in this analysis
 - Land change projections (IMAGE, FORE-SCE)
 - Fire extent and emissions (CONSUM, FOFEM)
 - Biogeochemical models (General Ensemble Modeling System)
 - Century
 - Erosion Deposition Carbon Model
 - Land Greenhouse-gas Accounting Tool
 - Hydrology
 - SPARROW
 - LOADEST

Conterminous US Results: Baseline and Projected Land Use and Land Cover Change

	Baseline Area (km ²)	% of total area	2050 Area (km²)	% of total area	Change in % composition
Forest	2,323,458	29.6	2,214,153	28.2	-1.40
Agriculture	2,033,000	25.9	2,158,948	27.5	1.60
Shrub/Grass	2,657,306	33.8	2,510,995	32.0	-1.80
Wetland	311,482	4.0	313,717	4.0	-
Other	531,380	6.8	658,813	8.4	1.60
Total	7,856,626		7,856,626		

Less forest and shrub/grass, more agriculture and urbanization, stable wetland numbers

Land Change **Modeling: SE USA example**

33°

- **Demand for forest** harvesting
- Increased urbanization
- Little new forest land

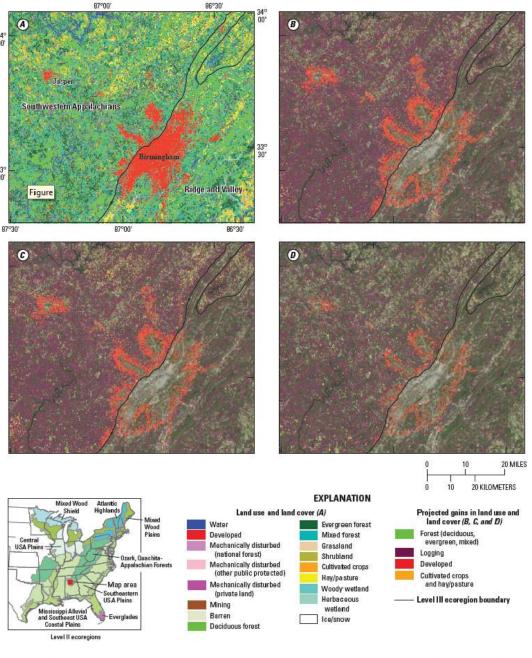


Figure 3-14. Maps showing A, land use and land cover (LULC) and a comparison of the projected LULC change in scenarios B, A1B, C, A2, and D, B1 in 2050 for the area Birmingham, Alabama, in the Ozark, Ouachita-Appalachian Forests ecoregion. Changes were projected to be the result of land-use change (agricultural lands, for ests, developed lands) or forest clearcutting.

Conterminous US Carbon stock* by Ecosystem type (TgC)

	2000	2010	2020	2030	2040	2050
Forest	26756 (23524-29010)	29613 (2731831704)	32318 (30382-34864)	34888 (32361-38401)	37253 (334416-79420)	
Agriculture	7907 (7789-8072)	8306 (7982-8817)	8734 (8076-9759)		9888 (8708-11222)	10467 (9057-12108)
Grass/Shrub	6098 (5618-6914)	6505 (5776-7503)	6704 (5842-7902)	6811 (5887-8010)	6979 (6039-8361)	7168 (6223-8731)
Wetland	4051 (3670-4310)	4441 (4127-4752)	4966 (4666-5303)	5470 (5106-5868)	5948 (5568-6363)	6375 (5952-6823)
Other	339 (75-572)	391 (172-612)	460 (235-687)	525 (288-747)	572 (333-778)	594 (359-777)
Total	45151 (41687-47246)	49256 (47078-51883)	53190 (50592-56704)		60658 (57074-66354)	64107

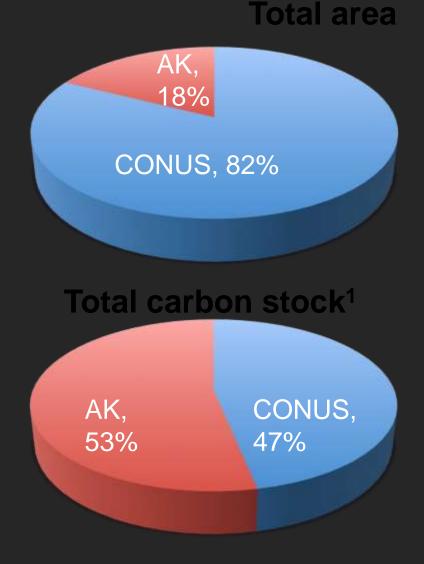
* In this table, stocks are averaged for each decade over 3 SRES scenarios, 3 GCMs, and 2 BGC models. Range of results is in parentheses. 9

Carbon flux* by Ecosystem type in TgC/yr

	2010	2020	2030	2040	2050
	-292	-276	-256	-236	-225
Forest	(-59 to -533)	(-46 to -550)	(-77 to -578)	(-15 to -512)	(7 to -610)
	-44	-39	-46	-53	-49
Agriculture	(47 to -128)	(103 to -136)	(52 to -117)	(55 to -154)	(10 to -146)
	-44	-22	-11	-17	-19
Grass/Shrub	(37 to -138)	(43 to -148)	(48 to -106)	(-54 to -111)	(59 to -111)
	-39	-53	-52	-48	-43
Wetland	(-27 to -82)	(-20 to -81)	(-28 to -75)	(-15 to -70)	(-5 to -80)
	-5	-7	-6	-5	-2
Other	(1 to -15)	(-1 to -14)	(-1 to -13)	(2 to -11)	(8 to -9)
	-431	-405	-378	-367	-345
Total	(-163 to -808)	(-124 to -776)	(-83 to -804)	(-31 to -733)	(-11 to -793)

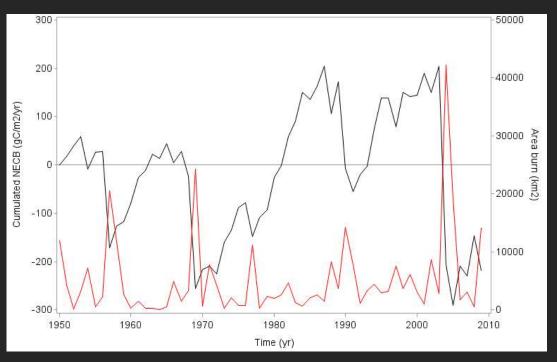
* In this table, flux averaged for each decade over 3 SRES scenarios, 3 GCMs, and 2 BGC models. (range of results in parentheses). Negative numbers indicate carbon sink, positive numbers indicate carbon source.

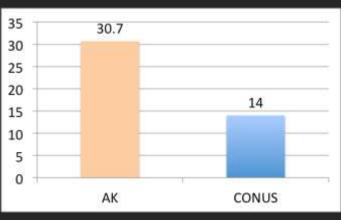
Carbon stock and flux by Ecosystem type


- Wide range of results are highly dependent on scenario and model used
- Most results indicate a growing carbon stock
- Under most scenarios, there is a decreasing carbon sink in the conterminous US

Alaska contains massive carbon stocks

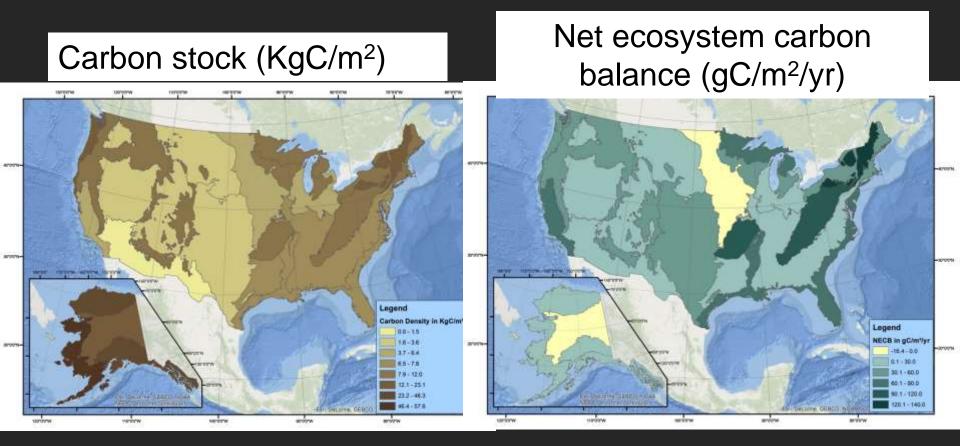
Alaska has 225 million acres of Federal land (61.8% of the state). Federal land holdings in Alaska constitute 36% of all Fed lands across U.S. (623.3m acres).



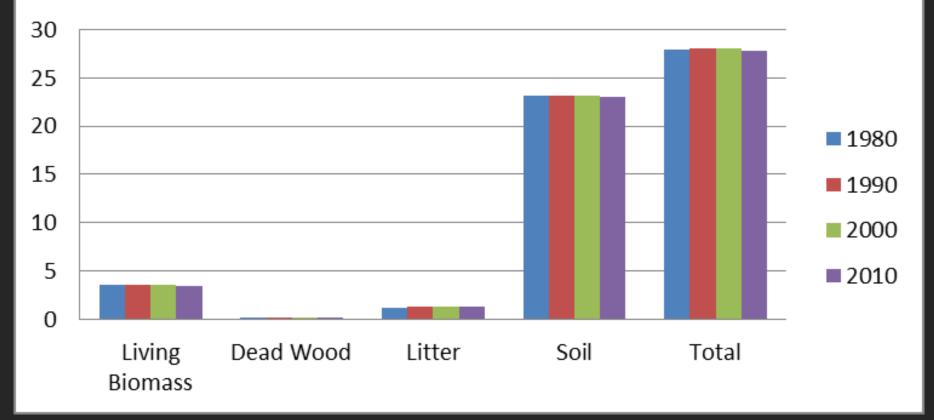

¹Zhu and McGuire, eds., 2016

The role of fire in GHG emissions in Alaska

Relationship between cumulative carbon sequestration (black line) and area of fire (red line)



GHG emissions by fires


Alaska is a weak carbon sink

Even though Alaska stores more carbon than the rest of the U.S. combined, the state as a whole is a weak carbon sink ~ 3.7 TgC/yr. And the boreal region is a carbon source by 7.9 TgC/yr.

Zhu and McGuire, eds., 2016

Estimated Carbon Stocks in Forests of Interior Alaska (Pg C)

Next Steps

- Complete assessment (2017)
- Regular assessments of Interior lands

Using Assessment to support Decision Making

- Decision support to land managers
- Develop capabilities to routinely update the assessments, tracking the effects of wildfire, drought, and other changing conditions on carbon storage (partnerships with other Interior Bureaus)

Energy Independence and Security Act § 712 calls for DOI to:

- Determine the current stocks and fluxes of ecosystem carbon and other greenhouse gases (methane and nitrous oxide)
- National assessment covering all major terrestrial and aquatic ecosystems
- Estimate potential capacity of ecosystems to increase carbon sequestration
- Consider policy applications (e.g. adaptation and mitigation applications)
- Consider effects of climate change and other controlling processes such as land use and ecosystem disturbances
- Consult with DOI bureaus and other organizations

Partnership with USFWS (Great Dismal Swamp and other NWRs)

- Provide information on C balance; understand how management and/or restoration could potentially increase C storage
- Estimate effects of hydrologic management on carbon sequestration, fire management, and establishing selected types of vegetation communities
- Enhance carbon sequestration on public lands while quantifying ecosystem service tradeoffs

Biological Carbon Sequestration

Closing thoughts:

- USGS has completed an assessment of biological carbon sequestration in the conterminous US
- It appears that the US will continue to be a carbon sink, although the strength of the sink may be weakening
- Work is underway to integrate the assessment into land management actions

Thank you!

For more information:

https://www2.usgs.gov/climate_landuse/land_carbon

reed@usgs.gov

