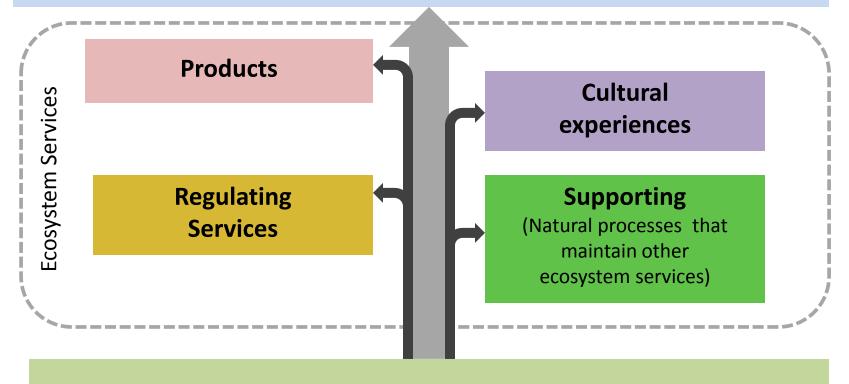


Project Team

CONSERVATION FUND

- Will Allen, Director of Strategic Conservation Planning
- Ted Weber, Strategic
 Conservation Science
 Manager
- Jazmin Varela, Strategic
 Conservation Information
 Manager
- Dr. Kent Messer, Resource Economist, University of Delaware

About The Conservation Fund


The Conservation Fund works at the intersection of conservation and community—we believe that environmental protection and economic vitality are inseparable.

What are Ecosystem Services?

Human well-being

Material needs, health, security, social relations, "quality of life"

Ecological Capital

Chicago Wilderness Biodiversity Recovery Plan

Chapter 1

Executive Summary

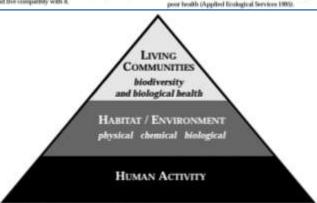
Chicago Wilderness and Its Biodiversity Recovery Plan

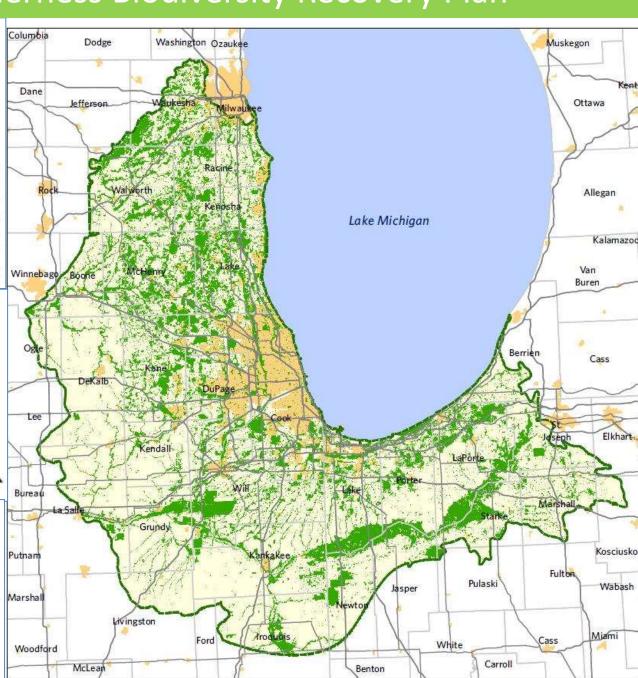
1.1 Introduction

I.I.I Chicago Wilderness: who we are, what we are accomplishing.

"Chicago Wikierness" refers to nature and to the people and Institutions that protect it. Chicago Wikierness is \$90,009 areas of prestreted connecevation lead—some of the larguet and best surviving occadinately wedlands, and prairies in the Mikiernes. It is also the much larger matrix of public and private lands of seasy kinds that support nature in the region along with the people who protect and the comparities with it. Many of the surviving surrors constructives of the Chicago region use of national and global significance for conservation. The sighar is blessed with both richness and opportunity for the retinevation. Yet reasons had calso that on our experiencing a mostly decline in both matter species and communities. For example,

- In a review for this place, the Chicago Wilderness Science and Land Management Towns from that more than half of the major anomanily types of the region were at the highest level of corners atten concern than either to the arrial language remaining or in the poor schalated both of the remaining examples.
- A 1985 survey of DuPage County forest preserves revealed that 80% of its natural areas had declined to peer health (Applied Emiliarical Services 1993).




Figure 3.1 Ecosystem health and human activity

Chapter 8

Preserving Land and Water Resources for Biodiversity

8.1 Introduction

The previous chapters reviewed the types of natural communities found to the Chicago Wildowson invasiond the goals and actions resolved to naturals them Ai month in Chapter 3 the natural aroun of the regions can be seen as Owner(ship of natural aroun in the Chicago Wikhensess region in a mix of public and private. The cose of Chicago Mikhersess commits of public lead permanently defiqued in the conservation of nature. Hauserset, as basses also of like land intensallies, the choices result by private landsoments because increasingly important. Lated management by private ensemble on the algorithm of the or events in nearly public natural aroun. Festimanels,

GREEN INFRASTRUCTURE VISION

VERSION 2.3 ECOSYSTEM SERVICE VALUATION

- ✓ Given existing peer reviewed science, GIV Version 2.2 can help estimate the monetized social benefit of conservation in comparison with the investments required to protect land.
- ✓ Balmford et al. (2002) found that if the values of ecological services are considered, the benefits from conserving natural land gives a return on investment of at least 100 to 1.
- ✓ GIV 2.3 will be useful in identifying the most strategic locations for CMAP and its partners to implement the land conservation goals of the GO TO 2040 metropolitan Chicago comprehensive regional plan.

Selecting ecosystem services to map

Ecosystem Service	Description		
REGULATING	& SUPPORTING		
Hazard A	melioration		
Water Flow Regulation / Flood Control	Maintain water flow stability and protect areas against flooding (e.g., from storms).		
Water Purification	Maintain water quality sufficient for human consumption, recreational uses like swimming and fishing, and aquatic life.		
Erosion Control and Sediment Retention	Maintain soil and slope stability, and retain soil and sediment on site.		
Groundwater Recharge	Maintain natural rates of groundwater recharge and aquifer replenishment		
Air Purification	Remove particulates and other pollutants from the air		
	mate		
Microclimate Moderation	Lower ambient and surface air temperature through shading		
Regulation of Water Temperature	Moderate water temperature in streams		
Carbon Storage	Sequester carbon in vegetation and soils, thereby reducing atmospheric CO ₂ and global climate change		
Biol	ogical		
Support Native Flora and Fauna	Maintain species diversity and biomass		
Pollination	Provide pollinators for crops and other vegetation important to humans		
Pest and Disease Control	Provide biota which consume pests and control diseases		
Provis	ioning		
Food Production	Production of plant or fungal-based food for human consumption		
Game and Fish Production	Production of wild game and fish for human consumption		
Fiber Production	Production of wood and other natural fibers for human use		
Soil Formation	Long-term production of soil and peat for support of vegetation and other uses		
Biochemical Production	Provision of biochemicals, natural medicines, pharmaceuticals, etc.		
Genetic Information	Genetic resources for medical and other uses, including those not yet realized		

Selecting ecosystem services to map

Ecosystem Service	Description				
Cultural					
Decreation and Factourism	Outdoor, nature-based experiences like hiking, birding, hunting,				
Recreation and Ecotourism	camping, etc.				
Covings in Community Compiess	Savings in community services from not converting natural land				
Savings in Community Services	to houses				
Increase in Property Values	Provide attractive location for homes and businesses				
Cairman and Education	Existence of natural systems and areas for school excursions,				
Science and Education	advancement of scientific knowledge, etc.				
Spiritual and Aesthetic	Aesthetic enjoyment or spiritual or religious fulfillment				
De societ de les	The value placed on knowing that future generations will have the				
Bequest value	option to utilize the resource.				
Emisterna andre	The non-use value of simply knowing that particular resources				
Existence value	exist, even if they are not used.				

Valuation Methods

Avoided cost: Services allow society to avoid costs that would have been incurred in the absence of those services (e.g., natural flood control preventing property damages or natural waste treatment preventing health costs)

Replacement cost: Services could be replaced with man-made systems (e.g., natural waste treatment having to be replaced by costly engineered systems)

Factor income: Services provide for the enhancement of incomes (e.g., water quality increasing commercial fisheries catches and fishermen incomes)

Travel cost: Service demand may require travel, whose costs can reflect the implied value of the service (e.g., value of ecotourism or recreation is at least what a visitor is willing to pay to get there)

Hedonic pricing: Service demand may be reflected in the prices people will pay for associated goods (e.g., increase in housing prices due to water views or access to parks)

Contingent valuation: Service demand may be elicited by posing hypothetical scenarios that involve some valuation of alternatives (e.g., how much people are willing to pay for increased availability of fish or wildlife).

Metrics and valuation methods

Ecosystem Service	Metrics	Types of economic analyses
Water Flow Regulation / Flood Control	Reduction of flood damage, Reduction of stormwater flows, Reduction of peak discharges, Reduction of combined sewer system costs, Reduction of soil erosion	Avoided cost, Replacement cost
Water Purification	Reduction of N, P, Cl ⁻ , sediment, bacteria, and other pollutants for drinking water, swimming, fishing, aquatic life, and other uses.	Avoided cost, Replacement cost
Groundwater Recharge	Supply of water to groundwater rather than surface runoff	Avoided cost, Replacement cost, Price of public water supply
Carbon Storage	Reduction of atmospheric CO ₂ and associated climate effects	Avoided cost, Market price of carbon
Support Native Flora and Fauna	Protection of wildlife habitat Maintenance of ecosystem functions and resilience	Willingness to pay (contingent valuation)
Recreation and Ecotourism	Money spent on nature-based recreation (hunting, fishing, birding, hiking, etc.)	Surveys of money expended on nature-based recreation

Literature review

- A large tree can reduce 5,400 gallons of stormwater runoff per year.
- An acre of forest can avoid \$21 per acre per year of stormwater treatment costs and over \$9,000 per acre per year in gray infrastructure investment costs.
- An acre of wetlands can typically store 1-1.5 million gallons of floodwater.
- In Wisconsin, watersheds with 30% wetland or lake area had flood peaks 60-80% lower than watersheds with no wetland or lake area.
- Not building in floodplains could save an average \$900 per acre per year in flood damages.

Assigning ecosystem service values to GIV

			LANDSCAPE TY	PE			
ECOSYSTEM SERVICE		Prairie / Grassland /					
ECOSTSTEIN SERVICE		Woodlands / Forest	Savanna	Wetlands	Lakes/ Streams		
	Max.	\$49,000	\$13,900	\$43,000	\$31,740		
Water Flow Regulation/	Median	\$815	\$6,951	\$4,900	\$900		
Flood control	Min.	\$11	\$2	\$1	\$388		
	# estimates	10	2	15	3		
	Max.	\$1,300	\$57	\$79,800			
Water Purification	Median	\$1,025	\$57	\$3,429			
water Purmeation	Min.	\$750	\$57	\$170			
	# estimates	2	1	12	N/A		
	Max.	\$269		\$37,120	\$986		
Croundwater Decharge	Median	\$269		\$2,479	\$669		
Groundwater Recharge	Min.	\$269		\$11	\$38		
	# estimates	1	0	14	5		
	Max.	\$1,960	\$184	\$175			
Carban Starage	Median	\$133	\$82	\$136			
Carbon Storage	Min.	\$32	\$5	\$100			
	# estimates	12	4	3	C		
	Max.	\$591		\$14,819	\$1,749		
Support Native Flora and	Median	\$535		\$1,480	\$20		
Fauna	Min.	\$319		\$70	\$1		

\$754

\$48

\$6

13

\$53,874

\$2,825

\$1 387

0 \$1

\$1

\$1

\$14,142

\$7,091

\$65

\$11,049

\$1,434

\$185,963

\$13,857

\$389

\$37

15

Recreation and Ecotourism

estimates

Max. Median

Min.

Max.

Min

studies

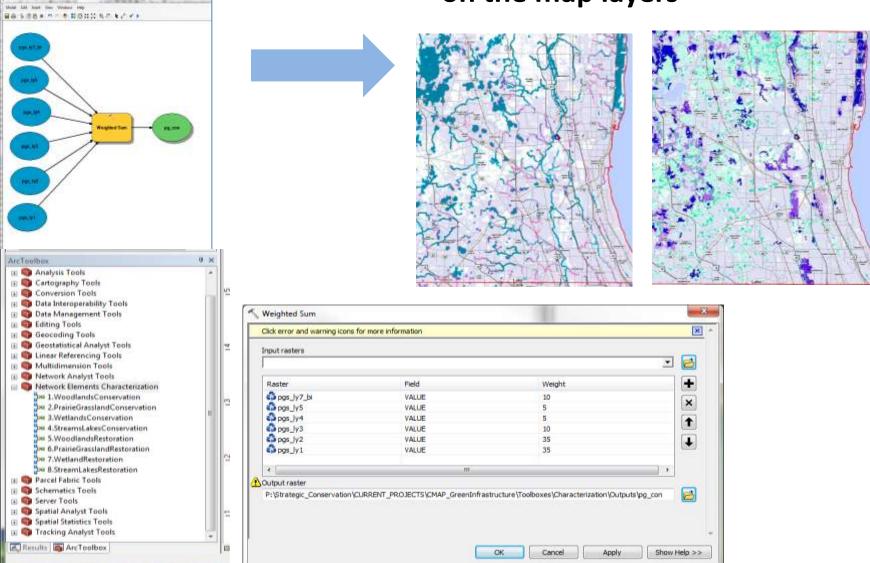
Median

TOTAL

\$2

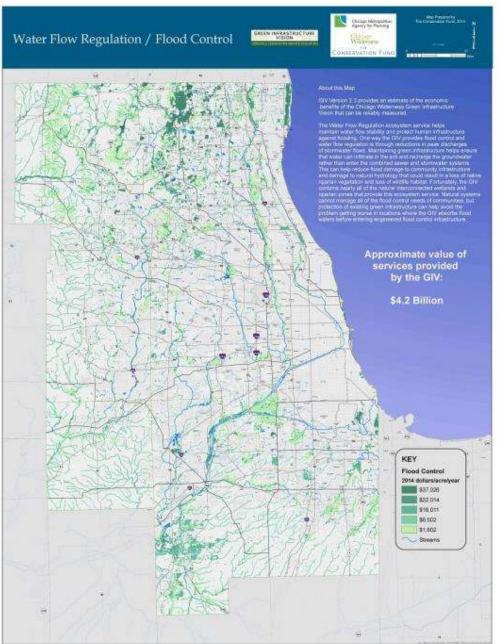
\$23,284

\$2,229

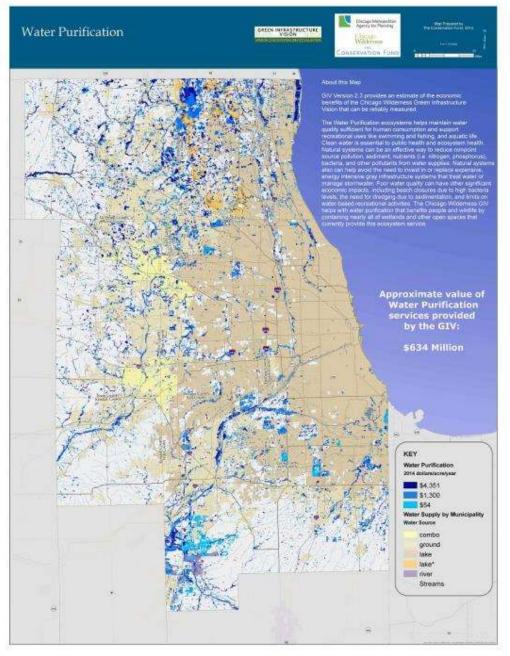

\$57,760

\$3,818

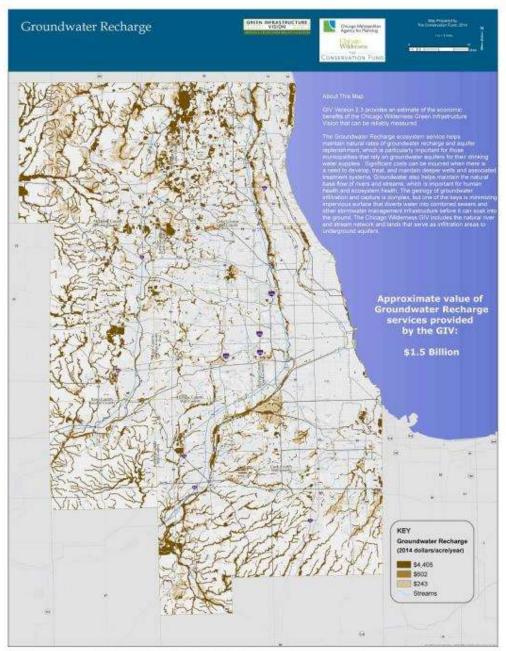
\$429


Technical Approach

Apply the ecosystem service values spatially on the map layers


Water Flow Regulation / Flood control

	Median (\$2014/ac)	Selected (\$2014/ac)
Woodlands / Forest	\$1,415	\$1,603
Prairie / Grassland / Savanna	\$16,000	\$16,000
Wetlands	\$4,900	\$22,000
Natural Floodplains	\$3,700	\$6,500
Lakes	\$43,000	\$37,000

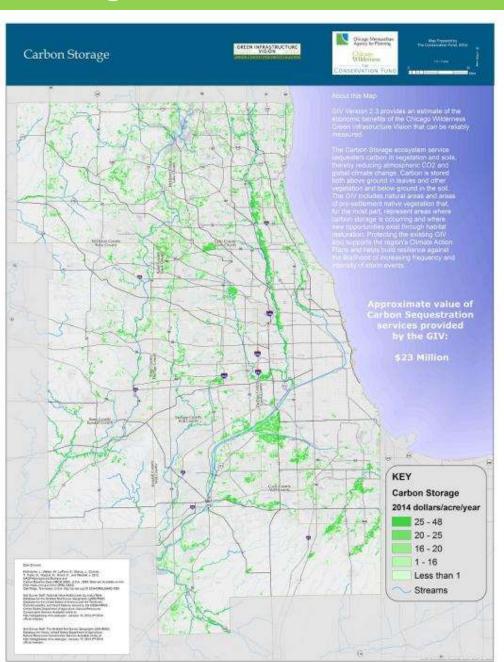

Water Purification

	Median (\$2014/ac)	Selected (\$2014/ac)
Woodlands / Forest	\$1,060	\$1,300
Prairie / Grassland / Savanna	\$57	\$57
Wetlands	\$3,429	\$4,350

Groundwater Recharge

	Median (\$2014/ac)	Selected (\$2014/ac)
Woodlands / Forest	\$269	\$269
Prairie / Grassland / Savanna	\$269	\$269
Wetlands	\$2,479	\$660
Natural Floodplains	\$4,806	\$4,806
Lakes	\$566	\$566

Carbon Storage

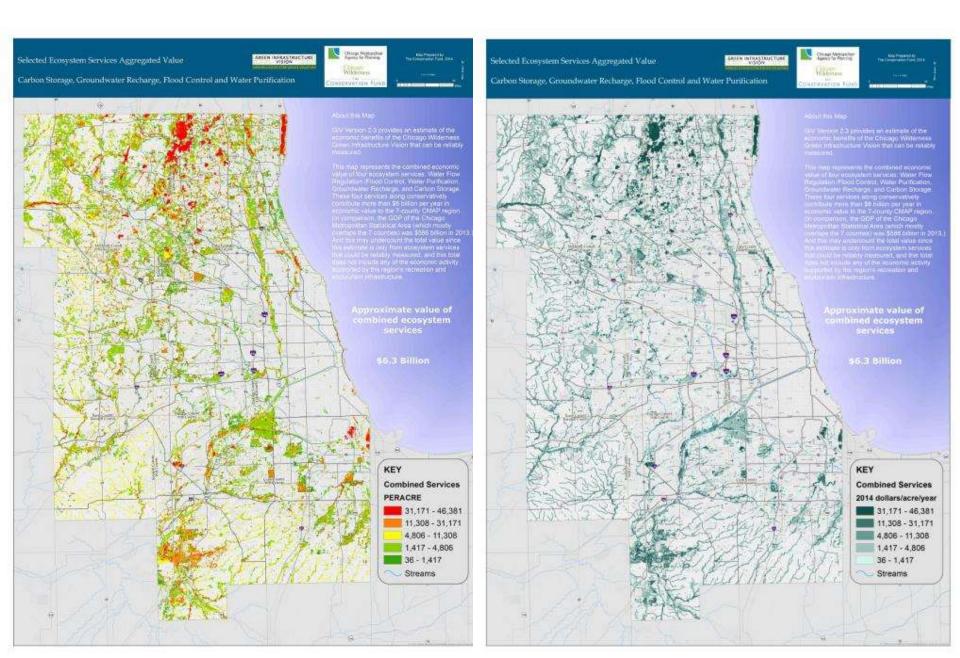

The carbon storage value per grid cell = (Cabove + Cbelow) * \$2/tonne/year

Cabove = Aboveground carbon storage (dry weight biomass * 0.5) from NBCD

Cbelow = Belowground carbon storage from gSSURGO

\$2/tonne/year was estimated avoided future damage from the carbon being sequestered in vegetation and soil instead of in the atmosphere.

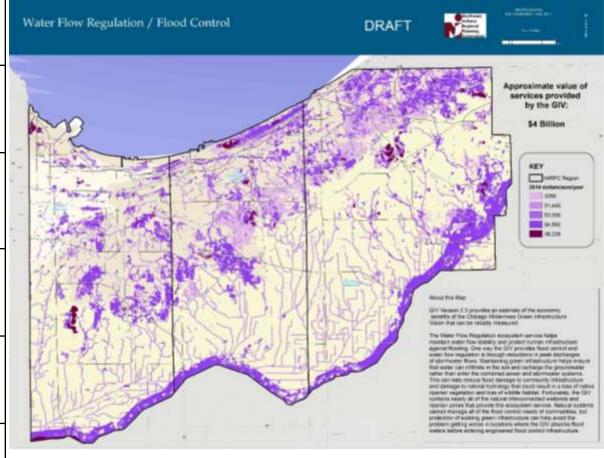
This is a snapshot in time. In the absence of disturbance, carbon storage will increase over time as forests and prairie reach maturity. Disturbances, especially fire, will release some of this carbon (primarily from the aboveground stock) into the atmosphere.



Native Flora and Fauna

Landscape feature	Value
Designated habitat (INAI, etc.), confirmed in field as important to biodiversity	10
Other core areas	5
Other functional connections (e.g., corridors)	3
Restoration building blocks	2

Combined value of Four Services


Action steps to maintain and enhance this service identified by workshop participants

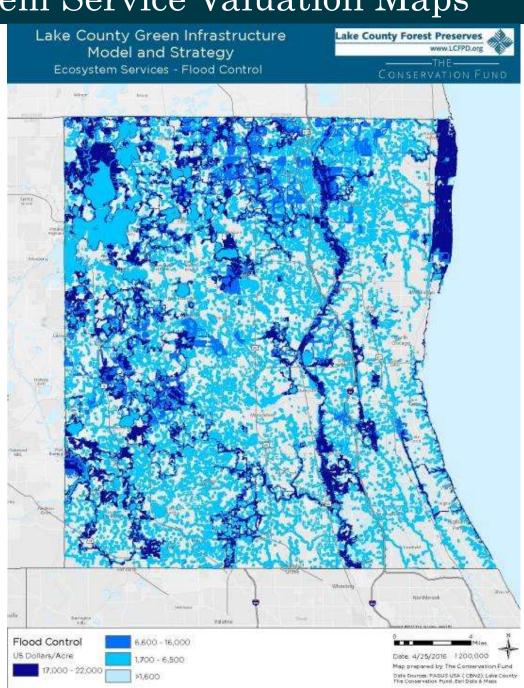
Programs, Policies, and Projects

- ✓ Prioritize program strategies based on whether drinking water supply is coming from groundwater, rivers, or Lake Michigan.
- ✓ Explore dam removal on rivers for water quality improvements and fish passage (e.g. Fox River study group, Des Plaines River)
- ✓ Implement large scale tributary restoration and wetlands protection.
- ✓ Develop education program for landowners and land managers on strategies to reduce pollution from their properties.
- ✓ Construct wetlands, bioswales, and rain gardens in urban areas.
- ✓ Re-meander streams and restoring natural stream flow in rural areas.
- ✓ Reduce agricultural pollution, including nutrients that eventually travel to the Gulf of Mexico hypoxic zone.
- ✓ Develop incentives for nutrient reduction on agricultural lands that supplement existing best management practices and USDA cost share programs.
- ✓ Highlight how protection and enhancement of the GIV can serve as key elements of a compliance strategy that minimizes gray infrastructure investment costs. The Clean Water Act (CWA) and Total Maximum Daily Load (TMDL) program provide the framework to protect water quality through setting specific targets to be attained.
- ✓ Strengthen standards for nutrient reduction in agricultural and urban runoff.
- ✓ Incorporate pollution reduction into municipal Comprehensive Plans.

Water Flow Regulation / Flood control

	Median (\$2014/ ac)	Selected (\$2014/ ac)
Woodlands / Forest	\$1,415	\$1,603
Prairie / Grassland / Savanna	\$16,000	\$16,000
Wetlands	\$4,900	\$22,000
Natural Floodplains	\$3,700	\$6,500
Lakes	\$43,000	\$37,000

- Water Flow Regulation / Flood Control
- > \$1.85 billion per year


The Water Flow Regulation ecosystem service helps maintain water flow stability and protect human infrastructure against flooding.

One way is through reductions in peak discharges of stormwater flows.

Maintaining green infrastructure helps ensure that water can infiltrate in the soil and recharge the groundwater rather than enter the combined sewer and stormwater systems.

This can help reduce flood damage to community infrastructure and damage to natural hydrology that could result in a loss of native riparian vegetation and loss of wildlife habitat.

Natural systems cannot manage all of the flood control needs of communities, but protection of existing green infrastructure can help avoid the problem getting worse in locations where the network absorbs flood waters before entering engineered flood control infrastructure.

Ecosystem Service Valuation by GIV Landscape Type

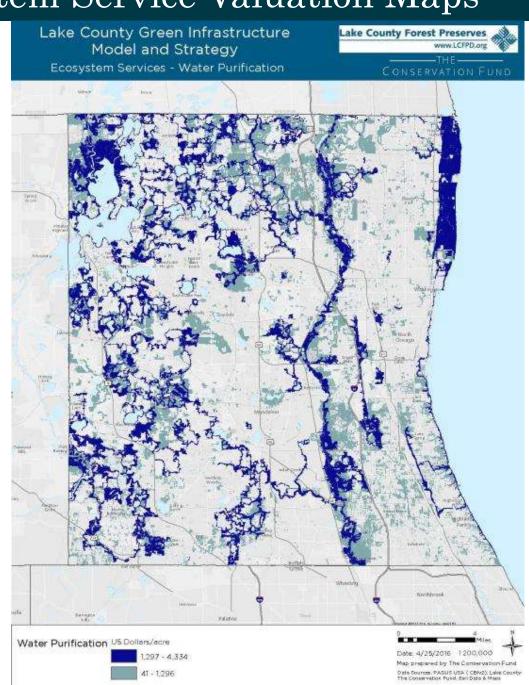
Estimated recreation economic value per park in Lake County, IL. - Examples

Preserve	Annual Visitors	Est. direct spending	Est. secondary effects	Est. consumer surplus	Est. total recreation value
Almond Marsh	5,689	\$170,670	\$99,159	\$287,465	\$557,294
Berkeley Prairie	2,346	\$70,380	\$40,891	\$118,543	\$229,814
Black Crown	200	\$6,000	\$3,486	\$10,106	\$19,592
Bluebird Meadow	200	\$6,000	\$3,486	\$10,106	\$19,592
Brae Loch Golf Club	21,876	\$656,280	\$381,299	\$1,105,394	\$2,142,973
Buffalo Creek	129,402	\$3,882,060	\$2,255,477	\$6,538,683	\$12,676,220
Cahokia Flatwoods	367,324	\$11,019,720	\$6,402,457	\$18,560,882	\$35,983,059
Cptn Daniel Wright Woods	568,126	\$17,043,780	\$9,902,436	\$28,707,407	\$55,653,623
Many others					
TOTAL	8,287,195	\$248,615,850	\$144,445,809	\$418,751,963	\$811,813,622

Estimated recreation economic value per state park in Lake County, IL.

Preserve	Annual Visitors	Est. direct spending	Est. secondary effects	Est. consumer surplus	Est. total recreation value
Chain "O" Lakes State Park	502,186	\$15,065,580	\$8,753,102	\$25,375,459	\$49,194,141
Volo Bog	95,544	\$2,866,320	\$1,665,332	\$4,827,838	\$9,359,490
Illinois Beach State Park	1,061,061	\$31,831,830	\$18,494,293	\$53,615,412	\$103,941,536
Moraine Hills State Park	615,298	\$18,458,940	\$10,724,644	\$31,091,008	\$60,274,592
North Point Marina	834,055	\$25,021,650	\$14,537,579	\$42,144,799	\$81,704,028
TOTAL	3,108,144	\$93,244,320	\$54,174,950	\$157,054,516	\$304,473,786

Estimated recreation economic value per bike trail in Lake County, IL.

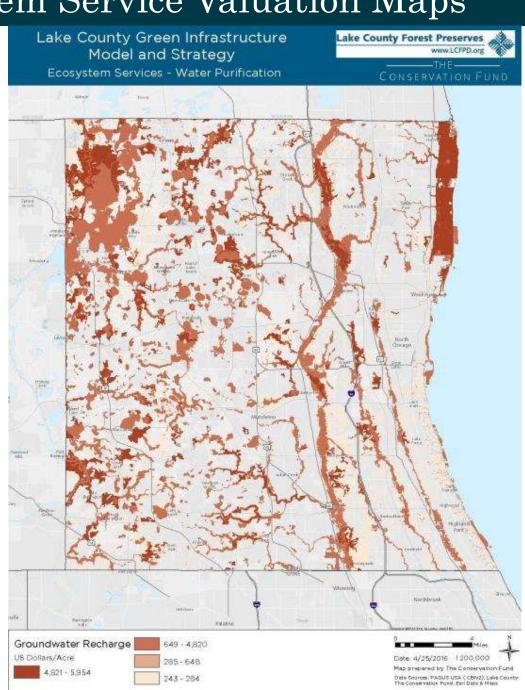

Preserve	Annual Visitors	Est. direct spending	Est. secondary effects	Est. consumer surplus	Est. total recreation value
Northshore Bike Path	73,730	\$1,548,330	\$908,870	\$6,817,076	\$9,274,276
McClory Bike Path	75,214	\$1,579,494	\$927,163	\$6,954,286	\$9,460,943
Skokie River Bike Path	142,228	\$2,986,788	\$1,753,245	\$13,150,401	\$17,890,433
TOTAL	291,172	\$6,114,612	\$3,589,277	\$26,921,763	\$36,625,652

- Water Purification
- > \$210 million per year

Clean water is essential to public health and ecosystem health. Natural systems can be an effective way to reduce nonpoint source pollution, sediment, nutrients (i.e. nitrogen, phosphorus), bacteria, and other pollutants from water supplies.

Natural systems also can help avoid the need to invest in or replace expensive, energy intensive gray infrastructure systems that treat water or manage stormwater.

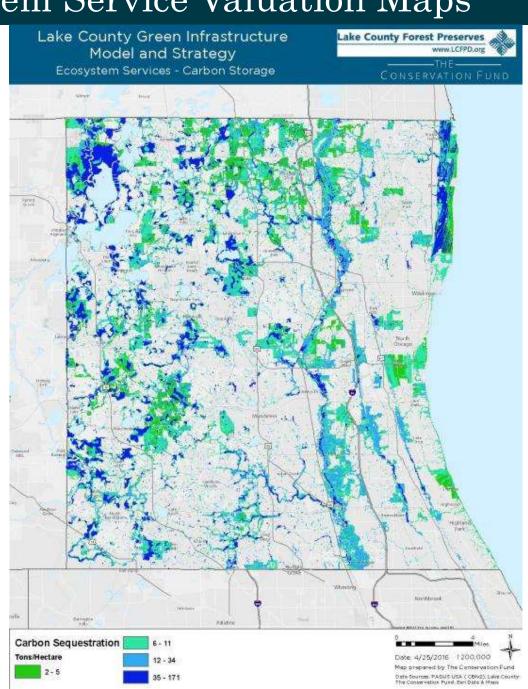
Lake County's Green Infrastructure helps with water purification that benefits people and wildlife by containing nearly all of wetlands and other open spaces that currently provide this ecosystem service.


- Groundwater Recharge
- > \$344 million per year

The Groundwater Recharge ecosystem service helps maintain natural rates of groundwater recharge and aquifer replenishment, which is particularly important for those municipalities that rely on groundwater aquifers for their drinking water supplies.

Significant costs can be incurred when there is a need to develop, treat, and maintain deeper wells and associated treatment systems.

Groundwater also helps maintain the natural base flow of rivers and streams, which is important for human health and ecosystem health.


The geology of groundwater infiltration and capture is complex, but one of the keys is minimizing impervious surface that diverts water into combined sewers and other stormwater management infrastructure before it can soak into the ground.

- Carbon Storage (based on 30meter resolution Woods Hole Research Center data, above and below ground carbon)
- > \$2.2 million per year (GIV network only)
- > \$4.1 million (countywide)

The Carbon Storage ecosystem service sequesters carbon in vegetation and soils, thereby reducing atmospheric CO_2 and global climate change. Carbon is stored both above ground in leaves and other vegetation and below ground in the soil.

Protecting the existing green infrastructure network supports the region's Climate Action Plans and helps build resilience against the likelihood of increasing frequency and intensity of storm events.

