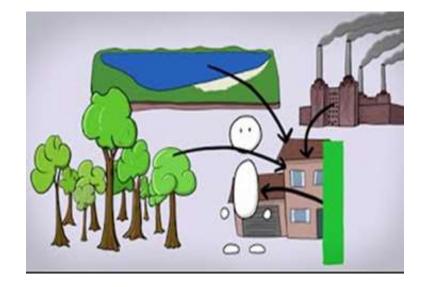


Economic valuation of tree cover in Perth, Western Australia

<u>Ram Pandit</u> and Maksym Polyakov School of Agricultural and Resource Economics University of Western Australia, Perth

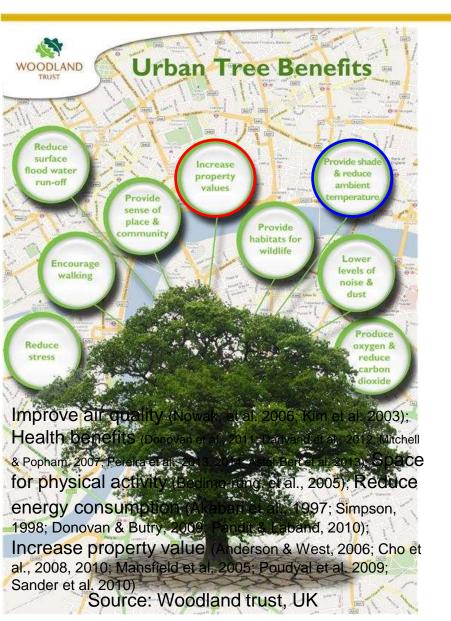
> Presented at the ACES 2016 Conference Jacksonville, Florida 7 December 2016

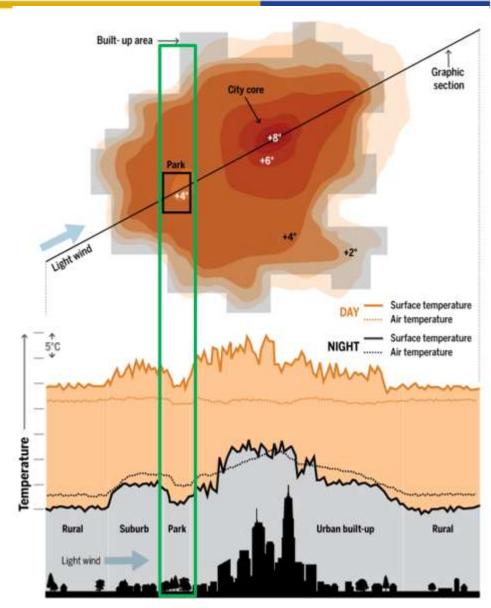
Outline



- Background context
- Research questions
- Study area
- Method/model and data
- Key results
- Conclusions
- Questions

Thought to remember...





Urban trees and forests

Economic valuation of tree cover School of Agricultural & Resource Economics

 The economic values of various benefits of urban trees and forests are often poorly recognised and ignored by planners and land owners (Sanders et al. 2010).

- Many such benefits are not traded in the markets
- Emphasis in urban greening
 - Australia-> Vision202020 = 20% more urban green space by 2020
- Individual households can also contribute if they know the economic value of these benefits
 - Such as property values

Empirical evidence on property Vand Cicultural

• USA/Europe

- USA e.g. Anderson & West, 2006; Cho et al., 2008, 2010; Mansfield et al. 2005; Poudyal et al. 2009; Sander et al. 2010)
- Europe e.g. Tyrvainen, 1997; Tyrvainen and Miettinen, 2000;
- China rapidly evolving

• Australia – not much, but evolving...

- o e.g., Hatton McDonald et al. 2010 for Adelaide
- Different housing markets
- Differences in opportunity costs associated with private land in cities
- What are the economic values of urban trees and forest covers in Australian cities that are capitalized in property prices?

Research questions

1) Are tree covers in different locations (in relation to the property) equally valuable?

Tree cover on own private space
 vs. on neighbouring private space
 vs. on neighbouring public space

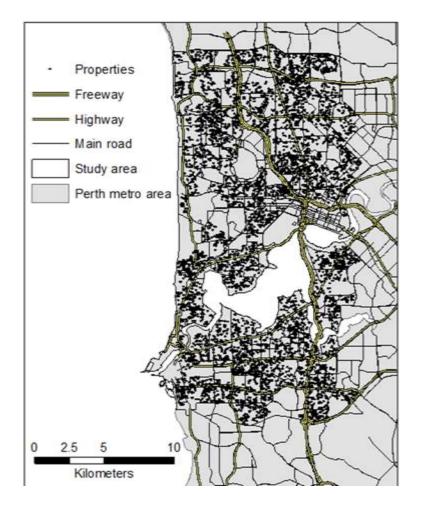
2) Are all types of green covers created equal?

- Trees & shrubs vs. lawns
- What about overhead powerlines?

Where is Australia (of course Perth?)

Study area - Perth city

Perth from distance


A closer look of a suburb

A closer look of a street

Study area and properties

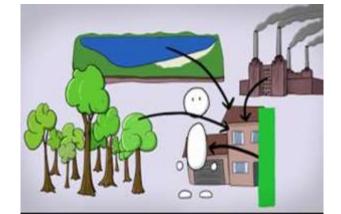
Tree cover

* % of tree cover on private space
* % of tree cover on public spaces
within 20 m buffer
* % of tree cover on neighboring
private space within 20 m buffer

Zoomed view of a section of study area

Residences, parks and trees

Method



Hedonic Pricing Method

- A revealed preference technique
- The amount of money an individual is willing to pay for a good depends on its individual characteristics (Rosen, 1974; Freeman, 1979)
- The variation in house prices is explained by the differences in preferences for structural, locational and environmental characteristics of houses
- The value of a house consist of values of its attributes reflected in sales price:

 $\mathbf{P} = f(\mathbf{X}) = f(\mathbf{S}, \mathbf{L}, \mathbf{E})$

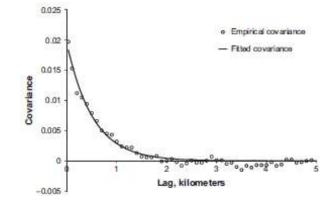
- S structural variables
- L locational characteristics
- E environmental attributes

Model

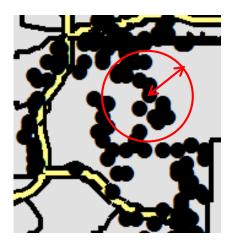
• The implicit value of each attribute can be estimated using regression model (hedonic price function):

$$P_i = \alpha + \mathbf{X}'_i \boldsymbol{\beta} + \varepsilon_i$$

- Spatial econometric models (parametric SEM, SLM or both)
- Spatial fixed effect model (spatial delineation zoning, suburbs, school district, zip code etc.)
- Geographically weighted regression (GWR) parametric
- GAM ('flexible fixed effect' non parametric, uses polynomials of latitude-longitude coordinates of the property with a number of base functions)


School of Agricultural & Resource Economics

Model


• Spatio-temporal model:

 $P_{i} = \alpha + \rho \mathbf{Z}_{i}' \mathbf{P} + \mathbf{X}_{i}' \boldsymbol{\beta} + \mathbf{W}' \mathbf{X} \boldsymbol{\theta} + \varepsilon_{i},$ where $\varepsilon_{i} = \lambda \mathbf{W}_{i}' \varepsilon + v_{i}, v_{i} \sim N(0, \sigma^{2})$

- Z = spatio-temporal weight matrix for house price [based on lag prices of previous sales (>90 days prior) within threshold distance derived from the data
- W = spatial weight matrix for explanatory variables [distance-based weight matrix for independent variables, doesn't depend on time, derived from the data] (residual of the OLS model)

W = 1548 m

Proportion of tree cover on

- Dependent variable: Property sales price = P
- Independent variables (X):
 - Structural characteristics of the property
 - Locational/neighbourhood characteristics
 - Environmental amenities/features

Age, yr Land area, m ² Foot-print of structure, m ² Property shape index # of bath/bed/study/ dining & meal room # of garage/car port	Relative elevation, m Slope (degree) Dist. to bust stop, m Dist. to free-&high-way, km Driving time to city/ocean /river, min	 Proportion of tree cover on public spaces within 20 m buffer Proportion of tree cover on neighboring private space within 20 m buffer Gravity index for recreational areas (small reserves, bush
dining & meal room # of garage/car port Dummy for pool/wall/roof	/river, min # of burglaries/1000 houses # of robberies/ 1000 people	

Data sources

- Property sales price and structural data -> Landgate, WA
- Tree cover was derived (using Feature Analyst in ArcGIS] from Quick Bird satellite imagery of the study area
- Property shape index, $PSI = {p / \sqrt{a}}$, p = perimeter, a = area
- Gravity index = $GI_{ri} = \sum_{1}^{k} \frac{A_{rk}}{D_{ik}^2}$,
 - r = type of recreational area (small reserves, bush land, playing field, lakes, golf courses)
 - \circ i = ith house
 - \circ k = number of 150m x 150m grid cells within 3km radius of ith house
 - \circ A_{rk} = area of the rth type of recreational areas within kth grid cell
 - \circ D_{ik}= distance between ith home and the center of kth grid cell

Descriptive statistics

Home sale price 2009, AUD (n=4200) Median=\$800,000 Mean=\$1,007,051

Structural var	mean	Environmental var	Mean (median)	Neighbourhood var	Mean
House age, yr	43	Tree cover-private	0.24	Elevation	1.18
Property area,	677		(0.22)	Slope (degree)	2.35
m ²	,	Tree cover-street verge (20m)	0.24 (0.20)	Dist bus stop, m	302
Footprint of built structure, m ²	294	294 Verge (2011) Tree cover-	0.26	Dist freeway, km	3.5
Property shape	4.41	neighbours (20m)	(0.25)	Dist highway, km	0.9
index, p/sqrt(a)		GI - Small	0.87 (0.65) 0.73 (0.34) 0.67 (0.45)	Drive time-city, min	8.8
Bathrooms	1.55	reserves		Drive time-ocean,	6.9
Bedrooms	3.20	GI – Bush reserves		min	0.3
Garages	0.90	GI – Playing field		Drive time-river, min	4.8
Car ports	0.50			Robberies/1000 pop	0.9
Pool	24%	GI - Lakes	0.17	Burglaries/1000 h	28.9
Brick wall	86%		(0.02)		20.0
Iron roof	15%				

Results (dependent var. Ln(price))

Key variables	OLS model	Spatio-temporal model
Age/Age-squared	-/+, S	-/+, S
Footprint/Land area, m ²	+, S	+, S
Property shape index	-, S	-, S
Bath/bed/study rooms, Carport, Garage, #	+, S	+, S
Swimming pool/ Brick wall/ Iron roof	+, S	+, S
Relative elevation (m)/ Slope ⁰ (degree)	+, S	+, S
Ln dist to bus stop, m	+, S	+, S
Ln dist to highway or freeway, km	+, S	+, S
Burglaries/1000 houses	-, S	-, S
Robberies/ 1000 people	-, S	-, NS
Prop. tree cover on own property	0.0556*	0.0305
Prop. tree cover - neigbouring property	0.0007	-0.0762**
Prop. tree cover on street (20 m buffer)	0.3026***	0.1814***

Key findings

- Tree cover on **own property** (private space) has no significant effect on property price
- At a median property price of \$800,000, and 20% and 25% canopy cover on street verges and adjacent properties:
 - A 10% increase in tree canopy cover on street verges increases the property price by @\$14,500.
 - A 10% increase on tree canopy cover on neighbouring properties reduces the house price by @ \$6100.

Pandit, R., M. Polyakov, and R. Sadler. 2014. Valuing Public and Private Urban Tree Canopy Cover, *Australian Journal of Agricultural and Resource Economics*, 58(3): 453-470.

Conclusions

- The benefits of urban tree cover have been capitalised in property markets in Perth, depending on the location
- Trees/tree covers on public space add value to properties, but not when they are in private space.
- These results provide further rationale to Australia's urban forestry vision202020 by indicating potential space to target for urban greening program to generate both public and private benefits.

Next-step: Disamenity value of overhead powerlines

- Study focus:
 - Street verges only
 - Valuing disamenity value of overhead powerlines
 - Shades of greens
 - Ground cover (lawn) and
 - Above ground cover (trees/shrubs together)

Variable	Model				
	OLS	SEM W 8nn	FEM	GAM k=1970	GAM k=243
Presence of overhead network (OHN)	-\$33,569	-\$21,492	-\$7,077	-\$8,752	-\$17,174
Per 1% of grass (OHN present)	\$8,936	\$5,991	\$5,554	\$5,019	\$5,368
Per 1% of grass (no OHN)	\$7,525	\$6,823	\$6,350	\$5,893	\$6,106
Per 1% of trees and shrubs (OHN present)	\$829	\$627	\$757	\$603	\$355
Per 1% trees and shrubs (no OHN)	\$1,398	\$1,117	\$681	\$740	\$482

Thank you!

Twitter: @Ram2Pandit Email: <u>ram.pandit@uwa.edu.au</u>