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Project Overview
Anticipating and Adapting to Phenologic Changes in the Chesapeake Water System
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Questions being addressed in policy analysis
Delmarva Case Study

1. What is the capacity for farmland
to provide a “rapid-response”
option for managing environmental
harms of extreme weather?

2. What policy incentives are most
cost-effective?

3. Does spatial targeting improve
cost-effectiveness?

* Are there agglomeration and/or
network effects that influence benefits?

* How do more complex policies affect
adoption likelihood?
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Ecosystem effects

Drainage management
affects

* Denitrification
* Function of topographic
index and soil type
* Flood peak
attenuation

* Function of storage
capacity and downstream
network length
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* Headwaters tend to have greater y k.
potential (relative to downstream :
areas) for:

e Denitrification
* Flood peak attenuation

* Benefits accumulate along stream 4 Cumulative effects \
network I ‘

* Larger portion of stream improved i

* More land protected from floods ,

* A competing effect — Total :‘
downstream delivered N load may
be more cost-effectively reduced
low in the network \




Methods for proof of concept analysis
—

Potential Adopters === |jkely Adopters Performance

o _ Nitrogen delivery
Likelihood of adoption

(no targeting)
Corn yield + Farm attributes

Installed (low yield = higher adoption)

Drainage Peak flow attenuation

Corn + poorly
drained soil

Likelihood of adoption
(with spatial targeting)
Corn yield + Farm attributes
+ Stream order




Results
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B Not targeted
Results B Targeted

* Targeting by stream order
increased
* N load reduction 18-32%

e Stream length with improved
water quality & flood protection
-17-3%
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Simple targeting improved cost-effectiveness for
denitrification but not flood peak attenuation

* Nitrogen benefits improved

Costs v Benefits
modestly

* No cumulative effects included - 40 NT e HWT
* Flood peak attenuation § 30
reduced at low adoption only =
 Removed the lowest performing E’*
parcels from the set o 10
* Appears that behavioral choices ?3 0
negated network effects at low § 0 10000 20000 30000

adoption Nitrogen (Ibs)



Conclusions

* Performance of a policy instrument depends on behavioral
responses and biophysical factors
* The attractiveness of the policy to farmers
e Site-specific conditions
* Network effects

* In this initial case study:

* Simple targeting rule appeared to improved N reduction /dollar
but not peak flow attenuation

* Opportunity costs of land were about the same across scenarios
suggesting that targeting did not increase costs

* Critical to consider how policy changes adoption
* Yield potential was used, but further work needed



