HUMAN AND ENVIRONMENTAL INFLUENCES ON ECOSYSTEM SERVICES AND WEST NILE VIRUS VECTOR INFECTION IN SUFFOLK COUNTY, NEW YORK (USA)

Mark H. Myer¹, Scott R. Campbell², and John M. Johnston¹

¹Computational Exposure Division, Watershed Exposure Branch, USEPA/ORD, Athens, Georgia, USA

² Arthropod-Borne Disease Laboratory, Suffolk County Department of Health Services, Yaphank, NY, USA

Study Context

- West Nile Virus is a mosquito-borne disease endemic in Suffolk County, NY.
- Surveillance programs sample mosquito populations across the county and test for the presence of West Nile.

Circles represent mosquito trap sites.

Factors Influencing WNV Ecology

- Land cover and use
 - WNV mosquitoes are associated with developed land.
- Weather
 - Warm weather and low precipitation favor WNV transmission.
 - Cases occur in the summer.
- Anthropogenic influences
 - WNV mosquitoes breed in containers and ponds.
 - Water contaminated with nutrient and organic runoff favors WNV mosquitoes.

http://www.esrl.noaa.gov/psd/data/usclimdivs/

The INLA SPDE Method

 Previous models of West Nile in mosquitoes struggled to incorporate spatial and temporal variability.

The Integrated Nested Laplace
 Approximation – Stochastic Partial Differential Equation (INLA SPDE)
 allows a complex spatiotemporal model in common R statistical software.

Constrained refined Delaunay triangulation

Variables Evaluated

6 DAYMET weather variables

Septic Systems on Long Island

- Population grew by 471% between 1940-1970, leading to a construction boom.
- 74% of residences are unsewered.
- Unusually high prevalence of old, unserviced cesspool systems.
- "Much of the nitrogen pollution in Suffolk County waters has been linked to unsewered, dense suburban sprawl" - Suffolk County Comprehensive Water Resources Management Plan 2015.

Source: riverheadlocal.com

Source: U.S. EPA. (2005) A Homeowner's Guide to Septic Systems

Septic Systems as Mosquito Habitat

Source: Marin Sonoma Mosquito & Vector Control

Source: affordableseptics.com

Variable Selection

4 A	В	c	D	E	F G	н	1 1	J	K	L	м	н	0 P	- a	B	s	т	0	v I	W	×	Y	z AA	AB	AC	AD	AE	AF	AG	AH A	al AJ	AK	AL	AM A	AN A	AO AP	AQ	AB	AS	AT /	AU AV	AW
1	Result	AREIS_S F	NDVI O	pen.Wa Dev	velop- Deve	lop Develo	op Develop	p Barren.L	Deciduo	Evergree I	Mixed.F. S	hrub.Sc Her	bacec Hay.l	Past Cultiva	te Woody. ¹	Emergen I	Beach T	FidalMar W	ater D	unes M	luck Gr	avelPit Gra	dedS Made	Lar Mucky	ySt Dredge	d UrbanLa	Recharge	DuneLan- E	scarpm Sa	andyLo Silty	Loar Haven.S	c Sand	LoamySa Lo	am Cut	NFill Wkl	Mean WkMe	an WkMean	WkMean	WkMean V	wkMean Wk	kMean WkMe	an WkMeanT
2 Result	- 1	0.1141	-0.015	-0.136 0	0.122 0.10	0.152	28 0.097	2 -0.112	-0.112	-0.114	-0.018	-0.069 -0	.084 -0.	067 -0.0	7 -0.061	-0.128	-0.126	-0.013	0.067	0.0214	-0.057 0	0.0417 0.	.0455 0.03	301 0.01	64 -0.12	0.112	0.1038	-0.118	-0.021	-0.018 0	.0111 0.094	-0.116	-0.047 0	.0855 0.	1334 0.	0.124	5 0.1165	-0.066	0.1897	0.1785 -0	0.058 0.220	32 0.2245
3 AREIS_S	0.1141	1	0.3479	-0.278 0.	7254 0.33	935 -0.13	92 -0.26	3 -0.224	-0.114	-0.217	0.0366	-0.132 -	0.118 -0	0.16 -0.16	2 -0.306	-0.245	-0.276	0.169 (.4282 0	.2866	-0.255 0.	.0536 0.	3407 0.14	94 -0.38	82 -0.258	-0.075	0.1759	-0.238	-0.061	-0.011 0.2	2149 0.501	-0.341	-0.098 0	.1398 0.3	2385 -0	0.024	3 -0.026	-0.022	0.0099	-0.054 -0	3.024 -0.00	05 -0.06
4 NDVI	-0.015	0.3479	1	-0.503 0.4	4864 -0.	144 -0.47	79 -0.59;	2 -0.473	0.6871	0.1775	0.2652	0.2196 0.	2705 0.0	655 -2E-0	4 0.2736	-0.016	-0.546	0.3488	0.464	0.4213 0	0.2088 0	.0103	0.127 0.17	66 -0.0	87 -0.27	1 -0.462	-0.072	-0.527	0.1441 (0.3314 0.	3511 0.230	-0.122	0.456	0.1458 -0	0.018 -0	0.06	3 0.0145	-0.048	0.0158	-0.042 -0	J.044 -0.0°	14 -0.067
5 Open.Wa												-0.04 -0									-0.152		-0.09 -0.1				-0.22					0.2616			.326 0.			0.0909	-0.055	-0.007 0.0		31 0.0065
6 Develope			0.4864		1 0.40		28 -0.19			-0.062													3072 0.07											0.1452 0.					0.0414	-0.031 -0	J.027 0.028	-0.048
				-0.17 0.4			0.135					-0.283 -0											.0619 0.03							-0.143 -0.				1.1236 0.2					0.0138	-0.005 0.	.0197 0.04	75 -0.012
8 Develop					-0.28 0.1		1 0.726																0.074 -0.0								0.22 -0.17					.036 0.045	8 0.0912	-0.069	0.0426	0.0752 -0	-0.055 0.044	
9 Develop		-0.263		-0.128 -0			59	1 -0.154						186 -0.17		-0.254									27 -0.132		0.288		-0.063 -).195 -0.			0.0351 0.		.009 0.019	4 0.0585	-0.017	0.0241	0.0577 -0		0.0737
10 Barren.L:				0.8242 -0			57 -0.15	_		-0.033													0.073 -0.0								.163 -0.15					.0116 -0.08		0.0369	-0.044	-0.003 0.0	0685 -0.03	39 0.0129
11 Deciduo				-0.229 -0 0.0369 -0			45 -0.39	3 -0.127 2 -0.033				0.2675 0.4						0.2182			0.185 (0.113 0.0								669 -0.07 .059 -0.16					-0.01 0.03 0362 -0.00		-0.023	-0.004	-0.018 -0	0.021 -0.02	29 -0.038 49 -0.019
12 Evergree				0.0363 -0 0.0762 0			16 -0.03		0.03413			0.0102 0											.0541 0.03		0.1 -0.102			-0.064								E-04 0.047			0.0004	0.0058 0.0	0006 0.00	44 0.0038
14 Shrub Sa				-0.04 -4			14 -0.18							754 0.107				-0.006					0.106 0.00				-0.002				.005 -0.00					0.041	2 0.0303 7 -5E-04		-0.01 #	##### 0.0	0.024	13 -0.002
			0.2705		-0.12 -0.2					0.0102		0.6551		073 -0.04							-0.026				56 0.2313			-0.042				0.1364			0.251 0.0				-0.01 #	-0.015 0	0183 -0.01	32 -0.015
	-0.067			-0.127 -0								0.0754 0.			9 -0.084								0.065 0.02				0.0824				.054 -0.10		0.1374 0						-0.007	-0.02 -/	0.018 -0.00	111 -0.025
17 Cultivate			-2E-04			0.19 -0.13						0.1074 -0			1 -0.122								-0.07 -0.0					-0.103				0.0376		.2912 -0		0.016 -0.0		-1010	-0.04	-0.06 -4	4E-04 -0./	0.051
18 Woody.\				-0.07 -0								0.2766 0.				0.2245							0.066 -0.0		84 0.1033							0.1233		0.285 0.0					0.0247 (0.0489 -0	0.006 0.00	74 0.0362
19 Emergen	-0.128	-0.245	-0.016	0.2951 -0	0.342 -0.3	329 -0.23	32 -0.25	4 0.2407	0.03	-0.081	-0.137	0.4033 0.	3027 0.00	088 0.134	1 0.2245	1	0.1782	-0.129	0.329	-0.26	0.0784 -	0.183 -	0.116 -0.1	48 0.19	45 0.610	-0.162	-0.249	0.1416	-0.031 0	.2542 -0	0.157 -0.2	1 0.4434	0.0609 -	0.294 -0	.249 0.0	0073 -0.03	1 -0.063	0.0076	-0.082	-0.051 0	0.0581 -0.0	71 -0.017
20 Beach	-0.126	-0.276	-0.546	0.929 -0	0.00	089 -0.29	93 -0.10-	4 0.7616	-0.23	0.1936	-0.086	-0.111 -0	0.054 -0	0.111 -0.11	6 -0.139	0.1782	1	-0.202	0.269	-0.309	-0.226 -	0.139 -0	.089 -0.	118 -0.1	58 0.4931	-0.123	-0.189	0.9411	-0.003 -	0.489 -0	.179 -0.15	0.2752	-0.445	-0.361 -0	0.352 0.	0575 -0.11	6 -0.09	0.1129	-0.048	-0.003 0.0	.0812 -0.0	15 0.0047
21 TidalMar	-0.019	0.169	0.3488	-0.195 0.2	2425 -0.	195 -0.21	77 -0.28	3 -0.212	0.2182	0.0723	0.0022	-0.006 0.	.0127 0.3	897 0.42	11 -0.129	-0.128	-0.202	1.0	.3408	0.7095	0.2016 -0	0.009 0.	0354 -8E-	04 -0.0	311 -0.178	-0.207	-0.115	-0.222	-0.017 0	0.0879 0.2	676 0.362	-0.261	0.1167 0	.2452 -	0.06	-0.01 0.000	3 -0.039	-0.022	-0.022	-0.067 -0	-0.013 -0.03	37 -0.078
22 Water	0.067	0.4282	0.464	-0.325 0.5	5632 0.00	047 -0.23	32 -0.23	6 -0.207	0.2789	-0.046	0.1793	-0.032	0.08 0.00	063 -0.01	4 -0.205	-0.329	-0.269	0.3408	1.0	.4438	-0.244 0.	.2252 0.	1823 0.18	47 -0.3	05 -0.283	-0.164	0.0049	-0.272	-0.021	-0.121 0	.454 0.353	-0.273	0.0386	0.3156 -0	.022	-0.01 0.056	4 #####	-0.022	0.0387	-0.019 -0	0.029 0.022	26 -0.035
23 Dunes				-0.317 0.4			63 -0.26			0.1247				574 0.359				0.7095			0.0905 0				351 -0.292		0.1372				674 0.273					0.052				-0.031 -0	J.022 0.00°	19 -0.052
24 Muck				-0.152 -0								0.0567 -0				0.0784						.0064 -0									.106 -0.0					0.017 0.026			0.0043			23 -0.004
25 GravelPit								11 0.0469						044 -0.08		-0.183		-0.003				1 -0					0.1278				.085 -0.01		0.3179			0.012 0.02			0.0192		-0.031 0.025	
26 GradedS				-0.09 0.3			74 -0.01								7 -0.066						-0.083 -0		1 -0.0		.12 -0.093		0.3058				048 0.231					.022 0.027			0.0154	0.0108 -0	-0.013 0.001	
				-0.107 0.				6 -0.081				0.0047 -0						-8E-04			-0.02 0				49 -0.13						.045 0.028			0.0181 0.		0.012 0.038			0.0315 (0.0232 -0		99 0.0033
28 MuckySt		-0.382		-0.114 -0		106 0.454			-0.143				0.056 -0.			0.1945					0.3735 -		-0.12 -0.0		1 0.0824							0.1048		0.284 0.		0.021 0.035			0.0292	0.0743 -		0.0659
29 Dredged				0.5202 -0 -0.135 -0				2 0.4235				0.2975 0. -0.147 -0		.081 -0.10				-0.178				-0.155 -0		131 0.08;	24 34 -0.022		-0.209).187 -0.17)259 0.202	7 0.3469 5 -0.118	-0.179 -		-0.27 0.0	0198 -0.08 0.018 0.018		0.0765	-0.056	-0.002 0.0		54 -3E-04 78 0.0538
30 UrbanLai												-0.147 -0 -0.203 -0									-0.151 0		2928 -0.1 3058 -0.0		63 -0.223		0.5328				693 0.202 693 0.235						8 0.0521 3 0.0197		0.0122	0.0467 -0		18 0.0538
32 DuneLan		-0.238		0.3038 -0				0.7706				-0.203 -0		0.11 -0.10					-0.272			-0.13 -0			114 0.3853							0.1985				0417 -0.10		0.0378		-0.003 -0	0.000	14 0.0054
33 Escarpm			0.1441		-0.04 -0.0			3 0.0089				-0.033 0.											2858 -0.0		37 -0.033		-0.037				1854 -0.00			0.057 -0					-0.031	-0.004 0.0	-0.013 -0.0	
34 SanduLo																							0.121 -0.0								.034 -0.13					.026 0.033			0.000	-0.001 -0	0.010 -0.00	
35 SiltuLoar				-0.197 0.					0.2669			-0.005 -0									-0.106 -		6048 -0.0		42 -0.181							-0.294				0.013			-0.002	-0.021 -		15 -0.028
36 Haven.Sc			0.2309		5776 0.1							-0.005 -											2314 0.02							-0.131 0.2		1 -0.425		0.1711 0		.0175 0.011				-0.026 -0		04 -0.032
37 Sand	-0.116	-0.341	-0.122	0.2616 -0	0.398 -0.	057 -0.1															-0.028 -0	0.092 -0	0.253 0.02	36 0.10	48 0.3463	-0.118	-0.329	0.1985	-0.072	-0.061 -0.	294 -0.42	5 1	0.0424	-0.557 -0	.096 0.	0142 -0.0	5 -0.034	0.0284	-0.03	-0.004 0./	.0478 -0.0	12 0.0073
38 LoamySa	-0.047	-0.098	0.456	-0.418 0.	.0371 -0.2	292 -0.12	27 -0.15	7 -0.285	0.4798	0.0637	0.0041	0.2983 0.	2657 0.1	374 0.279	4 0.3599	0.0609	-0.445	0.1167 0	.0386	0.2331	0.4123 0	0.3179 -	0.196 0.12	22 0.10	95 -0.178	-0.358	-0.154	-0.438	0.008 0	.4362 -0.	042 -0.29	0.0424	1 0	.0307 0.0	0486 -0	.027 0.064	2 0.0448	-0.061	0.0317	0.0065 -0	0.045 0.01	55 0.0013
39 Loam	0.0855	0.1398	0.1458	-0.421 0.	.1452 0.12	236 0.143	33 0.035	-0.329	-0.02	-0.107	0.0536	-0.033 -	0.121 0.2	907 0.291	2 -0.285	-0.294	-0.361	0.2452	0.3156	0.421	-0.109 0	0.2141 -0	0.035 0.0	181 -0.28	84 -0.356	0.1447	0.4101	-0.354	-0.057	0.037 0.1	1858 0.171	-0.557	0.0307	1	-0.2 -0	0.015 0.036	5 0.0153	-0.043	0.0104	-0.023 -0	-0.041 0.003	38 -0.029
40 CutNFill				-0.326 0.			17 0.218						0.251 -0.3		2 0.0895						0.1998 0.		0.047 0.07						-0.049 0		.192 0.165			-0.2	1 -0	0.061	2 0.0563	-0.044	0.0552	0.0359 -0		34 0.0261
41 WkMean												-0.007 0.0							-0.01			0.012 -0			0.0198	-0.018	0.0008	0.0417	0.0048 -	0.026 -0	.019 0.017	0.0142	-0.027	-0.015 -0	0.019	1 -0.22	5 -0.092	-0.027	0.0376	-0.053 0.4		91 -0.093
42 WkMean						.017 0.045								021 -0.0									0273 0.03						-0.019 0		0.011		0.0642 0			.225	1 0.88	-0.118	0.6213	0.6118		25 0.4626
43 WkMean						.03 0.09						-5E-04 -0		0.01 -0.04									0228 0.02						-0.009 0			-0.034				.092 0.8	8 1	-0.128	0.6293 (0.6436		08 0.4407
44 WkMean								7 0.0369				-0.006 0		.016 -0.0		0.0076							0.004 -0.0									0.0284		0.043 -0		.027 -0.11	8 -0.128	- 1	-0.271	-0.102 -	-0.02 -0.00	06 -0.093
45 WkMean				-0.055 0.						0.0004					4 0.0247								.0154 0.03				0.0056		-0.015 0		0.005				0552 0.0		3 0.6293	-0.271	1	0.8576 -0	0.126 0.604	46 0.6126
46 WkMean						005 0.075						- ####			6 0.0489								.0108 0.02			0.0467					.021 -0.02				0359 -0	0.611	8 0.6436	-0.102	0.8576	1 -0		97 0.6416
47 WkMean											0.0006			.018 -4E-0						-0.022			0.013 -0.0									0.0478		0.041 -0	0.055 0.0	0505 -0.0 0.031 0.452			-0.126	-0.126		-0.106
48 WkMean												-0.013 -0			3 0.0074								.0013 0.01			0.0178			-0.01 -		0.015 -5E-0		0.0155 0						0.6046	0.6031 -0	0.262 -0.106	1 0.8721
45 WRIVICON	0.2245	-0.06	-0.061	0.0005 -0	7.040 -0.	0.004	40 0.013	0.0128	-0.030	-0.013	0.0030	-0.002	0.015 -0.	025 -0.0	0.0362	-0.011	0.0041	-0.010	-0.035	-0.032	-0.004 0.	.0018 -0	0.00	33 0.06	-3E-04	0.0530	0.0015	0.0054	-0.001	0.003 -0.	020 -0.03	0.0013	0.0013	0.023 0.	0201 -0	.033 0.462	0.4401	-0.053	0.0120	0.0410 -0	3.100 0.01	a1 1

Variable Selection

Regression Results

Magnitude of Effect

Variable name	Coefficient (95% CI)
Open Water	-0.92(-1.29:-0.57)
Average Temperature	0.29 (0.15:0.42)
Septic Count	0.23 (0.09:0.40)
Woody Wetlands	-0.14 (-0.29:-0.01)
Precipitation	-0.11 (-0.20:-0.02)
NDVI	-0.14 (-0.34:0.07)
Developed, Low Intensity	-0.08 (-0.29:0.11)
Emergent Herbaceous Wetlands	-0.02 (-0.19:0.16)
σ_s^2 (spatial variance)	1.29 (0.40:3.36)
r (spatial range)	82 (32:191)
arphi (AR1 coefficient)	0.98 (0.94:0.99)

Spatial Regression Results

Units are log-odds of a mosquito pool testing positive for WNV

Septic Systems as Nitrogen Polluters

Source: SUNY-Stony Brook

Long Island has a high water table, and groundwater is the only freshwater source.

Source: SUNY-Stony Brook

Nitrogen Pollution and West Nile Virus

Source: geograph.org.uk

Culex restuans (Diptera: Culicidae) Oviposition Behavior Determined by Larval Habitat Quality and Quantity in Southeastern Michigan

Michael H. Reiskind, Mark L. Wilson

Linking environmental nutrient enrichment and disease emergence in humans and wildlife

<u>Pieter T. J. Johnson</u>, ^{1,*} <u>Alan R. Townsend</u>, ^{1,2} <u>Cory C. Cleveland</u>, ³ <u>Patricia M. Glibert</u>, ⁴ <u>Robert W. Howarth</u>, ⁵ <u>Valerie J. McKenzie</u>, ¹ <u>Eliska Rejmankova</u>, ⁶ and <u>Mary H. Ward</u> ⁷

Source: lawestvector.org

Healthy Wetlands Reduce Vector-Borne Disease

Figure 3. Relationship between human WNV disease incidence by county and non-passerine species richness in (a) 2002 and (b) 2003. In minimum adequate multiple regression models, non-passerine species richness was the sole predictor of disease incidence in 2002 (r=-0.52, t=-3.79, p<0.001), and one of two predictors of disease incidence in 2003 (r=-0.34, t=-2.49, p<0.05).

Year-round wetland availability discourages clustering of birds and bridge vectors.

Avian biodiversity "dilutes"community composition awayfrom WNV reservoirs.

Source: myweb.rollins.edu

Conclusions

Septic systems are correlated with an increase in WNV incidence.

Woody wetlands are correlated with a reduction in WNV incidence.

- Nitrogen pollution from septic systems is known to degrade wetlands.
 - A modest negative correlation was found between septic count and woody wetland cover, r= -.306
 - Dynamics of the relationship as it relates to WNV are unknown.

Implications for Ecosystem Valuation

- Prevention of disease is valuable, especially for life-threatening diseases spread by mosquitoes.
 - Existing treatment and prevention efforts are expensive and time-consuming.
- The relationship between healthy wetland function and vector-borne disease prevention merits further research to determine whether prevention represents an overlooked wetland service.