Soil Health: The Foundation for Sustainable Provision of Ecosystem Goods and Services

Dennis Chessman, Ph.D. USDA-Natural Resources Conservation Service Soil Health Division

ACES, Jacksonville, FL December 5-9, 2016

Soil functions

Soils deliver ecosystem services that enable life on Earth

United Nations

What is Soil Health?

According to NRCS and the Soil Health Institute

• The continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans.

Natural systems typically differ from agricultural systems

When compared to their native counterpart, agricultural systems in general have:

- Decreased hydrologic function
- Less soil biological activity
- Inadequate nutrient cycle
- Less C sequestered
- Lower biological diversity
- Higher soil temperatures
- Less vigorous plants
- Lower system resistance and resilience

Soil functions

Soils deliver ecosystem services that enable life on Earth

United Nations

The Soil Food Web $6CO_2 + 6H_2O_2 \rightarrow C_6H_{12}O_6 + 6O_2$

The Soil Food Web

Organic carbon provides the energy that drives the food web and therefore the health of the soil ecosystem

Factors affecting SOC levels

- Temperature and precipitation
- Soil texture
- Drainage
- Vegetation (influenced by climate)
- Management

A gricultural goods	Soil-based				
Agricultural goous	delivery processes				
Food and fibre	Nutrient capture and cycling	\mathbf{k}			
	OM input decomposition	\mathbb{A}	Aggregate	Functional	
	SOM dynamics		Ecosystem functions	Assemblages	
	Soil structure maintenance		1. C transformations	Decomposers • fungi • bacteria	
	Biological population regulation	$\lambda \land \lambda$		microbivoresdetritivores	
Non-agricultural	Soil-based	$\neg \land \land X$			
services	delivery processes		2. Nutrient cycling	Nutrient transforme	
Water quality and supply	Soil structure maintenance			 element transfor N-fixers 	
	Nutrient cycling	$\rightarrow $		 mycorrhizae 	
Erosion control	Soil structure maintenance	H	3. Soil structure maintenance	Ecosystem engineer • megafauna	
Atmospheric composition and climate regulation	SOM dynamics			 macrofauna fungi bacteria 	
Pollutant attenuation and degradation	Decomposition		4. Biological population	Biocontrollers	
	Nutrient cycling		regulation	 predators microbivores 	
Non-agricultural pest and disease control	Biological population regulation			 nyperparasites 	
Biodiversity conservation	Habitat provision				
	Biological population regulation	Kibblewhite et al., 2008			

How soil life contributes to ecosystem function

- Plant roots and biomass are the primary source of SOC
- Root exudates, bacteria and fungi provide organic glues for aggregation
- Earthworms and other burrowing macro-fauna improve water infiltration
- Organisms contribute to nutrient cycling by consuming, decomposing, mineralizing and retaining nutrients in their biomass
- Bioremediation of metals and contaminants by micro-fauna
- Pest suppression through antagonism, competition, or plant rootmicrobe communication

Managing agricultural lands to improve soil health – copying natural systems

- Optimize disturbance
- Keep the soil covered
- Increase system biodiversity
- Maintain roots in the soil

Potential benefit from changing management on private agricultural land is significant

- ~2.3 billion total land acres in the U.S.
- 56%, or 1.3 billion acres occur on private farms and ranches
- Increasing SOC in the top 6" of 1.3 billion acres by an average of 0.5% would capture about 6 billion tons of carbon (60% of annual global emissions)

Private working lands as proportion of total US land area

Our delicate relationship with water

Hydrologic implications of functioning soils

Healthy Soils' Vegetation Production Effects

Transect – Ecological Site	Expected Ecological Site Production (lbs/acre)	2011 Production (lbs/acre)	2012 Production (lbs/acre)	2013 Production (lbs/acre)	2014 Production (lbs/acre)	2015 Production (lbs/acre)
Point 1						
Loamy Prairie	4800	5943	1671	4580	4545	6493
Point 2						
Tight Sandy Loam	3000	2808	1178	4148	6593	7955
Point 3						
Sandy Loam	4400	4144	3000	3449	6209	5578
Yearly Averages						
(lbs/acre)	4,067	4,298	1,950	4,059	5782	667!

Total growing season production as pounds per acre on the JA Ranch in Bowie, TX, before, during and after the 2011 drought (Stanley and Derzapf 2015); figure from Maczko et al. 2016, NCBA Directions.

Percent bare ground on the JA Ranch in Bowie, TX for monitoring points visited annually from 2011-2015. Data provided by Stanley and Derzapf (2015); figure from Maczko et al. 2016, NCBA Directions.

Conclusions

- Healthy soils serve as the foundation for provision of natural and agricultural goods and services across ecosystems
- Soil health encompasses ecosystem processes with organisms both affecting and being affected by the environment
- Climate and precipitation influence soil health, however healthy soils can mitigate extreme weather event effects
- Soil systems are carbon-dependent; optimal disturbance, continuous plant cover, roots in the soil, and plant diversity support soil health

