

Portland Water District

- Drinking water since 1908
- 22 Million gal/day
- 200,000 consumers in 11 communities
- Sebago Lake is source
- \sim 280,000 ac watershed
- One of ~50 unfiltered water systems in U.S.

Recent Public Funding Trends

Estimated Combined Federal and State Conservation Funding in New England, 2004-2014

Portland Water District Watershed Land Conservation Initiative

- Began in 2007, informally
- Created formal program in 2013
- PWD will fund up to 25% of conservation transactions
- Projected ~ \$6M over next
 25 years
- Works primarily with two local land trusts
- 18 total projects, \sim 4,000 ac

10.6 x

13.2 x

PWD Owned Land

New Capital Needed to Match PWD's 25%

- Total cost of easements to reach 15% protected:
 - \$7.9 million
- Total cost of easements to reach 25% protected:
 - \$23.6 million

More Focused Capital Needed

- 10% of transactions previously identified as PWD water priorities
- Average Conservation Priority Index score: 4.7/10
- PWD match is $\sim 10\%$ on average

Use Ecosystem Services Models to Identify Conservation Value Propositions

- InVEST Models
 - Carbon storage
 - Water yield
 - Nutrient Retention
 - Sediment Retention
 - Managed Timber
- Locally Derived
 - Conservation Priorities
 - Development risk
- State wildlife action plan

Four Scenarios

- Baseline
 - Recent trends with broad conservation objectives
- 2. Water Quality Focus
 - Nitrogen/Phosphorus retention
 - Sediment retention
 - Water yield
- 3. Biodiversity Focus
 - State wildlife habitat focus areas
 - TNC Climate Resilience
- 4. Large Landscape Focus
 - Timber parcels > 500 acres with better than avg.
 NPV; AND
 - Water quality, habitat, TNC Climate Resilience (at least 1)

Alternative Conservation Strategies

Trend

Low Budget:

50% increase for 12,000 new ac Yields 14% protected after 30 years

High Budget:

150% increase for 36,000 new ac Yields ~25% protected after 30 years

Not all protection scenarios capture highest value water ecosystem services very well under limited budget.

- Only 3% overlap (yellow to left) between current trends and water-focused scenarios
- Biodiversity-focused scenario protected lands with 8-16% less nitrogen and 15-27% less phosphorous retention than other scenarios
- Water yield, carbon storage, and timber production results were similar

(Caveat: unprotected lands don't necessarily get developed)

Comparing Alternatives With High Budget

Water and Large Landscape: 25% Coincidence

Coincidence Matrix (High Budget)

	Trend	Biodiversity	Large Landscape	Water
Trend		47%	29%	26%
Biodiversity	47%		44%	23%
Large Landscape	30%	44%		24%
Water	27%	24%	25%	

Identify Revenue Potential with Conservation Co-Benefits

Closing Thoughts

- Traditional sources of funding declining, so new sources of watershed investment needed.
- Land trusts seek more capacity to link willing landowners with fundable conservation projects that can attract more financing.
- Utility seeks accelerated protection, with others sharing the cost.
- With lower investment, targeted water protection more important
- Investable opportunities for right stack of philanthropic and investment capital.
- Partnership emerging to:
 - 1. Develop business case for watershed investments
 - 2. Create water fund based on water quality protection and co-benefits

Thanks to Many Collaborators

Cover aerial photo credit: Portland Water District

Natural Infrastructure Savings

Investors Protecting Water

Water credits trading (e.g., water temperature, quality)

Water rights trading

Watershed protection

(TNC, EKO, 2014)

Value of Protection

Figure 2 | Preliminary Analysis for Portland, Maine—Baseline Scenario (\$ millions)

Scenario Assumptions

- Based on protection trends over last 30 years and development patterns over 10 years.
- Watershed is \sim 9% protected now (24,000 ac)
- Low Budget scenario
 - 50% increase for 12,000 new ac
 - Yields 14% protected after 30 years
- High Budget scenario
 - 150% increase for 36,000 new ac
 - Yields ~25% protected after 30 years
- Monte Carlo land protection simulations (1,000x)
- 30-year projections with development and forest managementdriven land cover change

Wildlands and Woodlands Initiative

- Protect 70% of New England's forests by 2060
- As of 2015: 9.4 million acres protected (26%)
- 2004-2014 public funding
 - \$973 million of public funding was spent towards

protecting 1.4 million ac (plus lots of unknown private money)

Since 1990, average of about
2 new areas protected per day

Importance of Forest to Surface Drinking Water

	otki gra MÉXICO	Hanana O 25		
	Presumpscot	Saco	Piscataqua/ Salmon Falls	Merrimack
Impervious Surface	7.0%	1.2%	4.2%	7.3%
Developed	6.8%	5.5%	14.5%	19.6%
Conserved	8.5%	34.7%	13.1%	15.0%

Regional Conservation Partnerships in Focus Watersheds

Water Fund of Funds?

Importance of Forest to Surface Drinking Water

- Downstream water users rely on upstream producers: forest landowners
- Where are water utilities and conservation NGOs working together?
- Identified existing funding sources in these watersheds
- Identified conservation partners in each
- Identified existing funding sources in each
- Now identifying large water users in each (breweries, industrial, etc.)

Maine Protected Areas 1900-2010

Excludes missing data for ~9% of acres

