Clues and Impediments to the Understanding of SE US Coastal Plain Soils

Acknowledgments:

Personnel who contributed to the Florida Soil Survey Program. Data generated through their effort prompted research reported in this talk.

Collaboration of UF Soil and Water Science colleagues.

Florida soil scientists who shared soil photographs.
In memory of two people who enriched my life …

Dr. Vic Carlisle

Dr. Earl Stone
Topics Addressed

• Clues
 – At E-Bt boundaries
 – At E-Bh boundaries

• Impediments
 – Terms that confound communication
 – Terms that mislead
 – Horizon designation mismatch with genetic context
Clues
E-Bt mineral distributions

Florida Soil Survey Data Tell a Story
In effect …

No matter how deep the boundary, clay mineralogy changes there
Example, one of many
Coated vs. Clean Sand Grains

Conclusion: HIV is large proportion of small amount of clay in grain coatings
Coated vs. Clean Sand Grains (cont.)

Lakeland

Coated = high HIV in clay

Myakka

Clean = high quartz, maybe smectite in clay

St. Lucie

Clean

... in Panhandle & N. Central Florida
... no matter how deep or thick
Characteristics of Sand Grain Coatings

- Patchy, not uniform
- About 2-8 % of sandy soil mass
- Contain similar proportions of silt & clay
- Silt – mostly quartz
- Clay – quartz, phyllosilicates, gibbsite, & oxides of Al & Fe
- NOT “iron oxide coatings”, although …
- Al- & Fe oxides largely control P sorption
- Al- & Fe oxides serve as “cement”
Potassium as a Clue ...

HIV-rich silts have platy grains containing K
But despite K, mica evades detection by x-ray diffraction

X-ray diffraction pattern of HIV concentrated in Medium silt
A Glimpse of Ghostly Mica … Finally!

Evidence of occluded mica zones in HIV grains

lattice fringe image of mica in HIV grain
Mica as a Ghostly Clue …

Mica – Metal Oxide – Grain Coating Connections:

Theory to explain HIV-kaolinite distribution

Non-quartz mineral abundance grossly exaggerated for illustration purposes.

(Mica is considered a weatherable mineral, too.)
Mica as a Ghostly Clue …

Theory to explain HIV-kaolinite distribution (cont.)

- Clay dispersed & mobilized
- New clay generated by weathering
- Mica weathers *in-situ*
- Al- & Fe oxides form and bind other components
- Mica products (HIV) & some kaolinite become incorporated into coatings
- HIV less subject to eluviation than kaolinite, explaining depth trend
E-Bt pedological vs lithological issue

- Dominant-sand to total-sand ratio
- Heavy mineral abundance
- Heavy mineral species

Most data I’ve read or collected support pedological
E-Bh and fluctuating water table

Sand grain coatings are again clues …

Initial observations:

- Looks like a coating redistribution
- Bh fades upward as seasonal high water table drops
Morphological & mineralogical evidence of coating redistribution

- Aquod to Psamment sequence moving up from the shore of a sandhill lake
- About a 10-m transect
Florida Soil Survey Program data suggesting Bh is clay-enriched, too

... but why is a fluctuating water table required?
Why is a fluctuating water table required? Some ideas -

• Metal sources for Bh - metal oxides – stable on well-drained landscapes

• Redox partially depletes Fe on poorly drained uplands ("flatwoods")

• Al => less crystalline & more vulnerable to organic complextion

• *Thresholds in frequency & duration of saturation* dissolve Al oxide via
 • Organic acids reach activities & kinetic thresholds
 • Reduced movement and microbial degradation rate

• Al oxide dissolution releases all coating components

• C moves Al, but Al eventually stops C within a finer matrix of colloid origin
Impediments
Horizon designations of Psamments on older landscapes

Examples of Landscape Associations, Psamment and Udult or Udalf:

- Candler and Apopka
 - Candler-Apopka, Levy Co.
- Ortega and Blanton
 - Blanton-Ortega, Lafayette Co.
- Ridgewood and Albany
 - Albany-Ridgewood, Lafayette Co.
- Tavares and Millhopper
 - Tavares-Millhopper, Hillsborough Co.
- Penney and Otela
 - Otela-Penney, Gilchrist Co.
Concept of “inert sand”

Inert sand precluded pedogenesis

Intense pedogenesis produced inert sand

It can’t be both
Family “Coated” – “Uncoated” distinction

Lake, etc.
- Has Fe & Al
- Some P retention
- Grains un-stripped
- “Coated”

Candler, etc.
- Has Fe & Al
- Some P retention
- Grains un-stripped
- “Uncoated”

St. Lucie, etc.
- No Fe & Al
- No P retention
- Grains stripped
- “Uncoated”
Bh and Bt horizons as “hardpans”

Data that do NOT support presumptions of Bh being a “hardpan”

Means of selected data for Bh, Bh1, Bh2, and Bh3 horizons sampled during the Florida Soil Survey Program

<table>
<thead>
<tr>
<th></th>
<th>Saturated Hydraulic Conductivity cm/h</th>
<th>Bulk Density g/cm³</th>
<th>Organic Carbon %</th>
<th>Clay %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Ortstein (vfr or fr)</td>
<td>14.10 n=440</td>
<td>1.50 n=440</td>
<td>1.38 n=466</td>
<td>3.50 n=466</td>
</tr>
<tr>
<td>Ortstein (vfi or fi)</td>
<td>8.05 n=43</td>
<td>1.51 n=42</td>
<td>2.59 n=43</td>
<td>5.71 n=43</td>
</tr>
</tbody>
</table>
Data that do NOT support presumptions of Bh being a “hardpan”

Bh horizon consistence & roots as described on OSDs of Alaquods of large extent

<table>
<thead>
<tr>
<th></th>
<th>Consistence</th>
<th>Roots Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myakka</td>
<td>Very friable</td>
<td>Many fine & medium roots</td>
</tr>
<tr>
<td>Leon</td>
<td>Firm to friable</td>
<td>Many fine & medium roots</td>
</tr>
<tr>
<td>Immokalee</td>
<td>Friable to loose</td>
<td>Common fine & medium roots</td>
</tr>
<tr>
<td>Wabasso</td>
<td>friable</td>
<td>Common fine & medium roots</td>
</tr>
</tbody>
</table>
Conclusions

- Soil survey data are a powerful resource in understanding soil genesis.
- Sand grain coatings and their distribution are major clues to the genesis of SE USA Coastal Plain soils.
- Horizon designation precedes and remains independent of soil classification.
- Words ill chosen can lead to misunderstanding (e.g., “hardpan”) and hamper communication (e.g., “uncoated”).