### Parasitoids of the pepper weevil across North America

©AAF

#### Rose Labbe, PhD

Harrow Research and Development Centre

Agriculture and Agri-Food Canada

### Pepper production in North America

- **1.8M tons** of bell peppers produced in Mexico in 2007 (FAOSTAT, 2009).
- **40K acres** of field bell peppers cultivated in the United States in 2015 (USDA, 2015).
- 150K tons (1.3K acres) of bell peppers grown in greenhouses and 66K tons (5.9K acres) in field in Canada in 2016. (StatsCan, 2017).
  - In wintertime, demand for peppers in Canada outstrips supply and must be imported from elsewhere.



#### **Pepper weevil in Ontario**

- At the end of summer in 2015 pepper fields in Southern Ontario experienced weevil infestation.
- A mild fall/winter in 2015/16 meant a new high for weevil presence, leading to significant crop losses in 2016.
- That year, pepper weevil was reported both in Essex and Chatham-Kent counties.



### Pheromone trap with two lures



Average weekly number of pepper weevils/trap in Southern Ontario



### Key management strategies now applied

- Screens installed on most pepper greenhouses
- Proper disposal of pepper biomass
- **Packing** of imported peppers isolated from growing facilities
- **High temperature treatment** for clean-up (>20° C for 2 wks)
- Intensive crop scouting (2 scouts/acre/wk; bounties)
- **Registration of new products** and development of BMPs.

## However, controlling immature pepper weevils remains a challenge.

Can we better target these life stages?

**Biological Control of Agricultural Pests A-1526:** 

- Assess **distribution** of the pepper weevil and identify its associated natural enemies.
- Establish a rearing colony of *A. eugenii* and candidate biocontrol agents.
- Evaluate efficacy of agents and report on potential for biological control.



## Field and greenhouse survey for pepper weevil and its natural enemies



Southwestern Region Aborted peppers collected weekly and monitored in controlled environment chambers for up to 6 weeks.

ontario-canada-travel.com/

#### When do parasitoids emerge?



Days in growth cabinet

### Percent parasitism at each location surveyed

| Site         | Pepper type                   | # peppers | # weevils | # Parasitoids | Parasitism rate |
|--------------|-------------------------------|-----------|-----------|---------------|-----------------|
|              |                               |           |           |               | (%)             |
| Kingsville 1 | jalapeno, chili               | 222       | 204       | 1             | 0.49            |
| Kingsville 2 | scotch bonnet, jalapeno       | 247       | 93        | 3             | 3.23            |
| Kingsville 3 | hot cherry, banana, jalapeno  | 311       | 652       | 2             | 0.31            |
| Leamington 1 | bell                          | 28        | 11        | 0             | 0.00            |
| Leamington 2 | mini sweet                    | 55        | 0         | 0             | 0.00            |
| Leamington 3 | bell                          | 200       | 55        | 6             | 10.91           |
| Dresden      | banana                        | 154       | 158       | 2             | 1.27            |
| Wallaceburg  | hot cherry                    | 10        | 5         | 0             | 0.00            |
| Cottam       | hot cherry, mini sweet, bell, | 642       | 710       | 45            | 6.34            |
|              | jalapeno, chili               |           |           |               |                 |
| Chatham      | jalapeno                      | 51        | 97        | 0             | 0.00            |
|              | Total number                  | 1920      | 1985      | 59            |                 |

# What parasitoid species are associated to the pepper weevil in Ontario?

3 Bracon spp. (16)



*B. mellitor* considered the most important parasitoid of boll weevil, *Anthonomus grandis* in SE USA and likely also Mexico (Pierce 1908a; and Hunter and Hinds 1905). 3 Nealiolus spp. (10)



N. curculionis is a parasitoid of the sunflower stem weevil, Cylindrocopturus adspersus, a pest of sunflower in the Great Plains, USA (Rogers and Serda, 1982; Charlet et al., 2002).

Other **Heliconinae** known to parasitize the pepper weevil include *Aliolus* spp. in the USA and Mexico (Mariscal et al., 1998; Rodriguez-Leyva et al., 2007). Pteromalus anthonomi (10)

Eupelmus pulchriceps (10)



Photo credit: R. Labbe AAFC

Reared previously from beetles including the tobacco beetle, *Lasioderma serricorne* (Anobiidae) and four species of *Anthonomus*, including *A. grandis*, *A. musculus*, *A. nigrinus* and *A. signatus*, (Peck, 1963; Burks, 1979)



Photo credit: R. Labbe AAFC

Native to and distributed across North and South America (Noyes, 2010; Gibson 2011).

**Primary or hyperparasioid** of at least 34 insect species typically developing within fruit, galls, cocoons or plant tissue (Gibson, 2011, Gibson, 1997).

### Jaliscoa (Catolaccus) hunteri





- Most widely distributed parasitoid of the pepper weevil in Mexico; Also present throughout the USA.
- Parasitizes the 3<sup>rd</sup> instar larvae: adult female responsiveness is correlated with this life stage.

### Distribution of Jaliscoa hunteri

- Generalist ectoparasitoid
  - Known to attack the cotton boll weevil,
    Anthonomous grandis
  - Intrinsic rate of increase
    (0.18) greater than that of
    the pepper weevil (0.14)
    Seal et al., 2002, Rodriguez-Leyva 2006.



# What species are absent in Canada? *Triaspis* eugenii (Braconidae)

- Most abundant parasitoid in Nayarit Mexico. Rodríguez-Leyva 2006
- Egg parasitoid
- Has greater reproductive potential (rm= 0.26) than does the pepper weevil (rm= 0.14). Seal et al. 2002, Rodríguez-Leyva 2006



# Can Jaliscoa hunteri reduce pepper weevil infestation?



#### Commercial greenhouse J. hunteri trial



#### **Design:**

- 30,000 adult J.hunteri wasps released in a 3 acre block (2.47 wasps/m<sup>2</sup>) vs. untreated 6 acre control.
- Three weekly releases of the parasitoid J.hunteri:
  - Oct 20, 27 and Nov 3rd.
- Collection and monitoring emergence from 200 infested peppers per range per week

#### **Results**:

48 % change in pepper weevil infestation levels observed between treatment and control.

But only a few adult parasitoids emerged.

Number of emerging pepper weevil

#### More questions to answer

- How is *J. hunteri* affecting weevil emergence?
  - Does host feeding occur often?
  - Behavioral studies led by PhD candidate, Catalina Fernandez
- Why is overall recovery of pepper weevil parasitoids so low?
  - Is host switching an important factor influencing successful parasitism?
- Are there ways to improve parasitism by *J. hunteri*?
  - Optimizing mass rearing of J. hunteri on other hosts, Felix Longpre, AAFC, London Photo credit: C. Fernandez AAFC
- Could other parasitoids identified be developed as possible biocontrol agents against the pepper weevil?



### Acknowledgements

Dana Gagnier, AAFC Renee Hilker, AAFC Cara McCreary, OMAFRA Dr. Tara Gariepy, AAFC Dr. Peter Mason, AAFC Dr. Jose Fernandez-Triana, AAFC Dr. Gary Gibson, AAFC Catalina Fernandez, University of Windsor Dr. Alfonso Torres Ruiz, Koppert Mexico Dr. Esteban Rodríguez-Leyva, COLPOS Dr. Philip Stansly Pepper growers of Ontario



Agriculture and Agri-Food Canada



Colegio de Postgraduados









Project funding: 2117: OGVG Collaborative framework: <u>Management of the pepper weevil</u> 1526: AAFC A-base: <u>Biological control of agricultural pests</u>

#### For more information, please contact: roselyne.labbe@canada.ca