The Role of Evidence in Adaptive Management: Examples from the Missouri River and Columbia River Estuary Restoration Programs

Kate Buenau1, Craig Fischenich2, Robert Jacobson3, Craig Fleming4

1Pacific Northwest National Laboratory
2USACE Engineer Research and Development Center
3USGS Columbia Environmental Research Center
4USACE Omaha District

National Conference on Ecosystem Restoration
April 19, 2016
Acknowledgements

Birds: Coral Huber, Chris Vernon, Val Cullinan, Carol Smith, Mike Delvaux, Chantel Cook, Mike Anteau, Dan Catlin, Jim Fraser, Rich Fischer, Erin Roche, Terry Shaffer, Larry Strong

Sturgeon: Mandy Annis, Mike Colvin, Dan James, Mike Parsley, Landon Pierce, Time Welker, Mike Randall, Todd Gemeinhardt, Wayne Nelson-Stastny, many participants in expert elicitation

Adaptive Management: Joe Bonneau, Casey Kruse, Aaron Quinn, Mary Roth, Ron Thom, Tom St. Clair, Dave Marmorek, Marc Nelitz, Carol Murray, Carol Smith, Wayne Nelson-Stastny, Mark Harberg

Independent Science Advisory Panel: Steve Bartell, Martin Doyle, Adrian Farmer, Dave Galat, Chris Guy, Gary Lamberti, Dennis Murphy

Independent Socio-Economic Technical Review: Dermot Hayes, John Loomis, Sarah Michaels
Knowledge
Knowledge Uncertainty
Knowledge Uncertainty Effects Analysis Uncertainty
Steady or decreasing reservoir levels/river stage during the nesting season increases survival from eggs to chick by reducing inundation risk.

Higher water levels early in the nesting season increases elevation of nest sites and plovers tend to select nesting sites near the current water level.

Naturalization of the flow regime at Gavins Point will decrease velocities and bioenergetic demands, resulting in increased growth and condition for exogenously feeding larvae and juveniles.

Alteration of the flow regime at Gavins Point can be optimized to decrease main-stem velocities, decrease effective drift distance, and minimize

Survival by flow alts and drift days

- **Existing Conditions**
- **Fall Release A**
Knowledge Uncertainty

Integrated Adaptive Management

Uncertainty
Missouri River Management Plan
Adaptive Management – Draft Bird Example

Kate Buenau, PNNL
Craig Fischenich, USACE-ERDC
May 11, 2015

LMR Pallid Sturgeon Framework, Targets, and Decision Criteria

Science and Adaptive Management Plan
Missouri River Recovery Program

J. Craig Fischenich, Kate E. Buenau, Robert B. Jacobson, Joseph L. Bonneau, and Craig A. Fleming

Developmental Draft Version 4
Science and Adaptive Management Plan
Missouri River Recovery Program

Draft/Pre-decisional/For Discussion Purposes Only

December 2015
TO: SAM Work Group, Management Plan Development Team, MRRIC

FROM: Independent Science Advisory Panel (ISAP)

RE: ISAP Evaluation of MRRMP v3 AM Plan and Pallid Level 3 Actions

DATE: 9 November 2015
Overarching Critical Uncertainties—Birds

► How much habitat is needed to maintain a resilient population of plovers and how should it be distributed?

► How are the Missouri River populations affected by migratory and metapopulation dynamics?

► How will changes in climate and channel morphology affect management effectiveness?

► How can the AM program buffer against natural (especially hydrologic) uncertainty?

► How can the AM program buffer against institutional and socioeconomic uncertainty?

► Management uncertainties: are actions necessary and effective?
Evidence—plovers and habitat

- Change in water elevation (ft)
- Habitat availability

Graphs showing the relationship between fledglings/pair and changes in water elevation and habitat availability.
Evidence \rightarrow models

Standard ESH (acres)

- **Do Nothing**
- **Target**
- **Option A**
- **Option B**

Year 1 2 3 4 5

Adult Plovers

- **Do Nothing**
- **Target**
- **Option A**
- **Option B**
Quantitative decision criteria

- Increase likelihood of meeting targets under uncertainty
- Reduce likelihood of adverse impacts
- Make trade-offs explicit
- Make scientific findings actionable
- Increase efficiency of resource use
- Facilitate decisions that must be made quickly
- Provide justification for actions
- Account for multiple factors in single decisions
Decision criteria examples

Habitat-forming flows will not be used more frequently than once every 4 years, nor within 4 years of any naturally-occurring flow that created 250 acres or more of standardized ESH. They will not be used when ambient ESH levels exceed 25% of target, or when system storage < 42 MAF for a spring release or the service level < 35 kcfs for a fall release.

If use of vegetation managed sandbars is < 50% and/or fledgling production < 80% that of new/unvegetated sandbars, use of methodologies should be reevaluated or discontinued.
Evidence → Models → Decision Criteria → Action → Evidence
Overarching Critical Uncertainties—Sturgeon

- Are flow manipulations necessary to cue spawning, contribute to effective dispersal of free embryos?
- Are water temperature manipulations necessary for reproductive cues, or increased productivity and growth?
- Is dispersal distance limiting for age-0 pallid sturgeon survival, and if so, what combination of flow manipulation and other engineering actions would remove that limit?
- Are food-producing or foraging habitats limiting for age-0 pallid sturgeon, and if so, what combination of flow manipulation and channel reconfiguration would remove that limit?
- Are spawning habitats limiting for successful reproduction, and if so what combination of flow manipulation and channel reconfiguration would remove that limit?
- Is sediment augmentation necessary to achieve recruitment?
- What approaches to population augmentation are necessary to maintain the population temporarily and will do so with least harm to genetic diversity?
Overarching Critical Uncertainties—Sturgeon

- Are flow manipulations necessary to cue spawning, contribute to effective dispersal of free embryos?
- Are water temperature manipulations necessary for reproductive cues, or increased productivity and growth?
- Is dispersal distance limiting for age-0 pallid sturgeon survival, and if so, what combination of flow manipulation and other engineering actions would remove that limit?
- Are food-producing or foraging habitats limiting for age-0 pallid sturgeon, and if so, what combination of flow manipulation and channel reconfiguration would remove that limit?
- Are spawning habitats limiting for successful reproduction, and if so, what combination of flow manipulation and channel reconfiguration would remove that limit?
- Is sediment augmentation necessary to achieve recruitment?
- What approaches to population augmentation are necessary to maintain the population temporarily and will do so with least harm to genetic diversity?
For every complex problem there is an answer that is clear, simple, and wrong.

- H. L. Mencken (1917)
Component-level Conceptual Model

Upper Basin Pallid Sturgeon CEM
Gametes & Developing Embryos

Model Management to Functional Habitats

Reasonably robust models

Significant Gaps

Model Population Sensitivity

Survival

Biological Understanding
Pallid sturgeon AM framework

<table>
<thead>
<tr>
<th>Level 1: Research</th>
<th>Population Level Biological Response IS NOT Expected</th>
<th>Studies without changes to the system (Laboratory studies or field studies under ambient conditions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 2: In-river Testing</td>
<td>Population Level Biological Response IS NOT Expected</td>
<td>Implementation of actions at a level sufficient to expect a measurable biological, behavioral, or physiological response in pallid sturgeon, surrogate species, or related habitat response.</td>
</tr>
<tr>
<td>Level 3: Scaled Implementation</td>
<td>Population Level Biological Response IS Expected</td>
<td>Initial implementation should occur at a level sufficient to expect a meaningful population response progressing to implementation at levels that result in improvements in the population; not expected to achieve full success.</td>
</tr>
<tr>
<td>Level 4: Ultimate Required Scale of Implementation</td>
<td>Population Level Biological Response IS Expected</td>
<td>Implementation to the ultimate level required to remove a limiting factor.</td>
</tr>
</tbody>
</table>
Criteria for advancing sturgeon actions

<table>
<thead>
<tr>
<th>Question</th>
<th>Y</th>
<th>U</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is this factor limiting pallid sturgeon reproductive and/or recruitment success?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Are pallid sturgeon needs sufficiently understood with respect to this limiting factor?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Do one or more management action(s) exist that could, in theory, address these needs?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Has it been demonstrated that at least one kind of management action has a sufficient probability of satisfying the biological need?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Have other biological, legal, and socioeconomic considerations been sufficiently addressed to determine whether or how to implement management actions to Level 3?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Criteria for Level 3 implementation

1. A "Yes" to all five questions triggers Level 3 implementation

2. A "Yes" to four of five, with an "Uncertain" for either #1 or #2 triggers a two-year clock to either reject the hypothesis or implement at Level 3
Sturgeon monitoring, research, and evaluation

- EA process yields 21 action hypotheses
- Recognize 4 levels of implementation:
 - Level 1: foundational science
 - Level 2: field experimentation
 - Level 3: initial implementation -> population response
 - Level 4: full implementation
- Science components address level 1 and level 2
 - 74 components, 2016 – 2032
- Levels 2-4: Hypothesis-driven monitoring (piloting updated concepts of channel reconfigurations):
 - Implementation – action completed?
 - Process, action effectiveness – ecological response?
 - Population – growing, attaining the right size?
<table>
<thead>
<tr>
<th>Analysis</th>
<th>Fish Responses</th>
<th>Habitat Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Particulate organic matter flux model</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>2. Hydrodynamic model of dike breaches</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>3. Historically breached sites</td>
<td>C</td>
<td>A B B B</td>
</tr>
<tr>
<td>4. Detections of known Interior Columbia basin ESA-listed fish</td>
<td>B C</td>
<td></td>
</tr>
<tr>
<td>5. Cumulative net ecosystem improvement model</td>
<td>A</td>
<td>A B</td>
</tr>
<tr>
<td>7. Meta-analysis of action effectiveness: LCRE, methods of hydrological reconnection without tide gates</td>
<td>B C C C C C C B B C B C</td>
<td></td>
</tr>
<tr>
<td>8. Analysis on target species</td>
<td>C</td>
<td>A A</td>
</tr>
<tr>
<td>9. Evidence-based literature review: LCRE tidal reconnections</td>
<td>C C C C C C C C</td>
<td></td>
</tr>
<tr>
<td>10. Evidence-based literature review: analogous cases in the global literature</td>
<td>A B C A A C B</td>
<td></td>
</tr>
</tbody>
</table>

Lines of Evidence

Diefenderfer et al, in press, *Ecosphere*
Conclusions

Knowledge

- Full implementation of actions to meet quantitative targets
- Numerical modeling of population effects and management options
- Quantitative decision criteria
- Active AM when possible

Uncertainty

- Tiered implementation with comprehensive science plan, targets to come
- Partial modeling → modeling of complete pathways
- Decision criteria for advancing implementation
- Active AM to accompany directed research