Application of SPARROW Modeling to Understanding Water-Quality Trends in the Chesapeake Bay Watershed

Scott W. Ator, Ana Maria Garcia

Thanks to:
Silvia Terziotti, Greg Schwarz, Doug Moyer, Joel Blomquist, Jeff Chanat, Andy Sekellick

This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.
Nitrogen and Phosphorus in Chesapeake Bay

- Sources and transport of N and P to Chesapeake Bay have been studied at multiple scales.
- Water-quality trends in selected tributaries are well documented.
- Less clear are the causes of different trends in different areas.

http://cbrim.er.usgs.gov
Sources of Nitrogen

- Agriculture provides the majority of nitrogen inputs to Chesapeake Bay and most major tributaries.

Ator et al., 2011
Nitrogen in Streams

- Nitrogen concentrations have generally decreased in recent years in many tributaries, but increased in others.
Nitrogen Sources

- Atmospheric deposition has generally decreased over time, but varies spatially.

Atmospheric Nitrogen Deposition in 1000’s of Metric Tons (LOESS smooth).

Data from Chesapeake Bay Program
Nitrogen Sources

Research Questions

• How do changes in stream chemistry relate to:
 • changing land use patterns?
 • changing practices within certain land-use settings?
 • changing atmospheric deposition or point sources?

• How can multiple steady-state SPARROW models calibrated for decadal time steps help to improve our understanding of landscape factors driving changes in stream chemistry?
Outline

• Background: What is SPARROW?
• Approach: How might SPARROW models be developed to understand water-quality changes over time?
• Preliminary Results
• Next Steps
The SPARROW Model

- **SPAtially-Referenced Regression On Watershed attributes**
- Developed in the 1990s by USGS (Smith et al., 1997)
- Regression (NLLS) approach to extrapolate estimated mean-annual flux (load) at monitored streams to unmonitored streams on the basis of watershed attributes
- Includes mass-balance and flow-routing
- Steady-state model of mean-annual conditions*
The SPARROW Model

• Regression approach
 – **Dependent variable**: mean annual flux of contaminant in a stream
 – **Explanatory variables**: watershed or stream attributes representing:
 • upland or in-stream sources
 • overland transport
 • in-stream transport

\[
F_{i}^{*} = \sum_{j \in J(i)} F_{j}' \delta_{i} A(Z_{i}^{S}, Z_{i}^{R}; \theta_{S}, \theta_{R}) + \sum_{n=1}^{N_{S}} S_{n,i} \alpha_{n} D_{n}(Z_{i}^{D}; \theta_{D}) A'(Z_{i}^{S}, Z_{i}^{R}; \theta_{S}, \theta_{R}).
\]

Schwarz et al., 2006

- \(i = \text{stream reach}\)
- \(j = \text{upstream reach(es)}\)
- \(n = \text{sources}\)
- \(D = \text{overland delivery function (DVF}_{i}\))
- \(A = \text{fluvial delivery function}\)
- \(\alpha, \theta = \text{estimated coefficients}\)
The SPARROW Model

- **Source Specification:**

<table>
<thead>
<tr>
<th>Input Variable</th>
<th>Interpretation of Model-Estimated Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass from a particular source</td>
<td>Mean proportion of that mass reaching local streams</td>
</tr>
<tr>
<td>Area of a particular landscape setting</td>
<td>Mean yield of contaminant from that setting to local streams</td>
</tr>
</tbody>
</table>

Flux_i = Flux delivered from upstream + Flux generated in local catchment

\[F^{*}_{i} = \left(\sum_{j \in J(i)} F'_{j} \right) \delta_{i} A\left(Z_{i}^{S}, Z_{i}^{R}; \theta_{S}, \theta_{R}\right) + \left(\sum_{n=1}^{N} S_{n,i} \alpha_{n} D_{n}\left(Z_{i}^{D}; \theta_{D}\right)\right) A'\left(Z_{i}^{S}, Z_{i}^{R}; \theta_{S}, \theta_{R}\right). \]

Schwarz et al., 2006

- \(i\) = stream reach
- \(j\) = upstream reach(es)
- \(n\) = sources (S)
- \(D\) = overland delivery function (DVF_i)
- \(A\) = fluvial delivery function
- \(\alpha, \theta\) = estimated coefficients
Approach

- Calibrate individual SPARROW models for 1992, 2002, and 2012 using:
 - A common stream network, land-to-water specification, and aquatic decay specification
 - Flow-normalized annual loads for 1992, 2002, and 2012 at the same group of sites (for calibration)
 - Consistent and comparable land-use and atmospheric and point sources (as source terms)
- Evaluate estimated source coefficients (α_n) to understand trends

\[
F_{i}^{*} = \left(\sum_{j \in J(i)} F_{j} \right) \delta_{i} \mathcal{A}'(Z_{i}^{S}, Z_{i}^{R}; \theta_{S}, \theta_{R}) + \left(\sum_{n=1}^{N_{S}} S_{n,i} \alpha_{n} D_{n}(Z_{i}^{D}; \theta_{D}) \right) A'(Z_{i}^{S}, Z_{i}^{R}; \theta_{S}, \theta_{R}).
\]

Schwarz et al., 2006

- $i = $ stream reach
- $j = $ upstream reach(es)
- $n = $ sources
- $D = $ overland delivery function (DVF$_i$)
- $A = $ fluvial delivery function
- $\alpha, \theta = $ estimated coefficients
Inputs: Calibration Data

• Flow-normalized annual loads are estimated and published for sites in the Chesapeake non-tidal monitoring network (NTN)
• With loads for 1992, 2002, and 2012:
 – TN (n=45 sites)
 – TP and SS (n=18 sites)
Preliminary Nitrogen Models

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef</td>
<td>p</td>
<td>Coef</td>
<td>p</td>
<td>Coef</td>
<td>p</td>
<td>Coef</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Point sources (kg)</td>
<td>1.78</td>
<td>0.0213</td>
<td>1.38</td>
<td>0.0533</td>
<td>0.687</td>
<td>0.1416</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developed (ha)</td>
<td>17.3</td>
<td>0.0003</td>
<td>13.1</td>
<td>0.0018</td>
<td>11.8</td>
<td>0.0016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest (ha)</td>
<td>0.37</td>
<td>0.3170</td>
<td>0.68</td>
<td>0.2166</td>
<td>0.47</td>
<td>0.3006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cropland (ha)</td>
<td>24.5</td>
<td>0.0070</td>
<td>32.2</td>
<td>0.0055</td>
<td>30.3</td>
<td>0.0047</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasture (ha)</td>
<td>23.0</td>
<td>0.0001</td>
<td>19.3</td>
<td>0.0008</td>
<td>22.5</td>
<td>0.0004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW recharge</td>
<td>0.924</td>
<td>0.0226</td>
<td>0.631</td>
<td>0.1671</td>
<td>0.783</td>
<td>0.0516</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil AWC</td>
<td>-1.43</td>
<td>0.0326</td>
<td>-1.15</td>
<td>0.1106</td>
<td>-1.22</td>
<td>0.0401</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pied. carbonate</td>
<td>0.247</td>
<td>0.0505</td>
<td>0.279</td>
<td>0.0257</td>
<td>0.232</td>
<td>0.0483</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Res Decay (d)</td>
<td>0.004</td>
<td>0.0526</td>
<td>0.004</td>
<td>0.0760</td>
<td>0.006</td>
<td>0.0543</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Str Decay (d)</td>
<td>0.539</td>
<td>0.0102</td>
<td>0.574</td>
<td>0.0165</td>
<td>0.559</td>
<td>0.0177</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Str Decay (d)</td>
<td>0.085</td>
<td>0.0999</td>
<td>0.067</td>
<td>0.1708</td>
<td>0.069</td>
<td>0.1738</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Next Steps

• Post-processor to:
 – Test H_0: source coefficients are not significantly different among time steps
 – Evaluate relative importance of changing sources (ie. land-uses) vs. changing average yield from each source (ie. model coefficients) to observed changes in stream chemistry.

• Look at change in average yields for different hydrogeologic settings
For More Information….

