Development of CASMs for Coastal Louisiana

Kate S. Watkins and Shaye E. Sable
Dynamic Solutions, LLC

Background
The Louisiana Coastal Protection and Restoration Authority (CPRA) supported the development, testing, and application of several linked large-scale numerical models to simulate operational scenarios of planned Mississippi River diversions and assess impacts to the estuarine ecosystem (Fig. 1).

Methods
The Comprehensive Aquatic Systems Model (CASM) is a daily-bioenergetics-based model that used temperature, salinity, Chl a, and vegetation data to predict biomass of 32 taxa within a food web context (Fig. 2).

The CASM was initialized, calibrated and validated with biomass data (g/m²) collected in 1995-2010 by the Louisiana Department of Wildlife and Fisheries and NOAA NMFS Science Center (Fig. 1). Biomass estimates were averaged across years to represent a ‘climatic’ year for seasonal calibration (Fig. 3).

Calibration results for key species:
- Predicted brown shrimp biomass fit the data well in part because they have strong, consistent seasonal patterns (Fig. 7).
- Bay anchovy showed mixed results. Young of the year (YOY) predictions fit the data well. Age-1+ were intentionally calibrated to a flat distribution of higher biomass based on life history.
- Red drum were calibrated ad hoc to fit known life history traits that were not reflected in the data.
- Largemouth bass showed poor calibration success, but are not caught or under-sampled in the calibration data.

Next Steps and Future Directions
- Simulations to assess potential impacts of proposed large-scale river diversions. Results to be presented Thursday at 11:00 (session 34).
- Further model testing and improvements:
 - Simplify food web
 - Include movement between polygons
 - Improve recruitment and links between life stages