Moving the Ohio River Basin Fish Habitat Partnership from “Early Action Sites” to true “Priority Areas”

Rob Simmonds1, Jeff Thomas 2, Fritz Boettner 3, Dr. Todd Petty 4, Dr. Michael Strager 4, et al.

1 US Fish & Wildlife Services
2 Ohio River Valley Water Sanitation Commission
3 Downstream Strategies, LLC
4 West Virginia University
Forged to …

- Protect
- Restore
- Enhance

… fish habitat through partnerships
Ohio River Basin
Ohio River Basin – Early Action Sites
Downstream Strategies & FHPs

- Create spatially-explicit habitat assessment models for each of the Midwestern FHPs, using Boosted Regression
- Create an integrated GIS decision support tool
- Create a regional representation of habitat condition
Boosted Regression Trees

• **Combines**
 – *Machine learning*
 – *Traditional statistical techniques*

• **Decision Trees**
 – partition the predictor space using rules that identify regions having the most homogeneous response
 – e.g., CART

• **Boosting**
 – Easier to find and average many rough rules than to find a single, highly accurate prediction rule
 – Related to model averaging
Response Variable: Brook Trout
Predictor Variable Weights

<table>
<thead>
<tr>
<th>Variable Description</th>
<th>Relative Influence</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local population density</td>
<td>9.044</td>
<td>100</td>
</tr>
<tr>
<td>Minimum stream elevation</td>
<td>7.732</td>
<td>91</td>
</tr>
<tr>
<td>Network wetland land cover (percent)</td>
<td>6.838</td>
<td>83</td>
</tr>
<tr>
<td>Network soil class C land cover (percent)</td>
<td>6.757</td>
<td>76</td>
</tr>
<tr>
<td>Watershed slope</td>
<td>6.277</td>
<td>70</td>
</tr>
<tr>
<td>Network soil class A land cover (percent)</td>
<td>6.090</td>
<td>63</td>
</tr>
<tr>
<td>Network forest land cover (percent)</td>
<td>4.570</td>
<td>57</td>
</tr>
<tr>
<td>Network impervious surface cover (percent)</td>
<td>4.097</td>
<td>53</td>
</tr>
<tr>
<td>Network density of road crossings</td>
<td>3.601</td>
<td>49</td>
</tr>
<tr>
<td>Local forest land cover (percent)</td>
<td>3.192</td>
<td>45</td>
</tr>
<tr>
<td>Upstream drainage area</td>
<td>3.187</td>
<td>42</td>
</tr>
<tr>
<td>Local density of cattle</td>
<td>3.054</td>
<td>39</td>
</tr>
<tr>
<td>Network developed land cover (percent)</td>
<td>2.926</td>
<td>36</td>
</tr>
<tr>
<td>Predicted thermal regime (cold, cool, warm)</td>
<td>2.321</td>
<td>33</td>
</tr>
<tr>
<td>Local groundwater withdrawal amount</td>
<td>2.222</td>
<td>30</td>
</tr>
</tbody>
</table>
Probability of Brook Trout
Predictor-Response Functions

Independent functional relationship between the fish response variable and *natural landscape attributes*.

- **Min. Elevation**: (1.00)
- **Soil C % Land Cover**: (0.87)
- **Average Slope**: (0.81)

CHQI is calculated for each 1:100K Segment Level Watershed.
Natural Habitat Quality Index

Legend
GLBFHP 1:100K Catchments
NHQI Score
- Very Poor
- Poor
- Moderate
- Good
- Very Good
- Not Modeled for Brook Trout
Anthropogenic Stress Index
NHQI vs. CASI

Cumulative Anthropogenic Stress Index Score

Natural Habitat Quality Index Score

Restoration Priorities

Protection Priorities
Decision Support Tool

- Integrated within ArcMap 9.3
- Index calculator
- Downstream future conditions based on user input and model output.
ORBFHP – Example Response Variables

1. Streams Signature Fish Index
2. Smallmouth Bass Abundance
3. Mussel Species Richness
4. Etc.....
Streams Signature Fish Index
Moving Forward

- **Days:** last response variable data submitted, initial draft models

- **Weeks:** FHP review of initial draft models, fully developed draft models

- **Month(s):** FHP review of full models, finalization of models
Healthy habitats, healthy mussels, healthy fish...all good for the American public.

Stay Tuned at MidwestFishHabitat.org